
Find the inverse of the matrix \[\left[ {\begin{array}{*{20}{c}}
2&0&{ - 1} \\
5&1&0 \\
0&1&3
\end{array}} \right]\] using elementary row or column transformation, if it exists.
Answer
561k+ views
Hint:If in a \[\left( {n \times n} \right)\] matrix A an inverse \[{A^{ - 1}}\] exists then \[A{A^{ -
1}} = {A^{ - 1}}A = I\]
In this question we need to find the inverse of the matrix using the elementary method. In the elementary transformation method, we start with a row or column and by applying various transformations on the chosen identity either on rows or the column we try to make maximum zeros of the identity. By using the concept of \[A{A^{ - 1}} = {A^{ - 1}}A = I\] we will find the inverse of the matrix.
Complete step by step solution:
Given the matrix whose inverse is to be find is \[\left[ {\begin{array}{*{20}{c}}
2&0&{ - 1} \\
5&1&0 \\
0&1&3
\end{array}} \right]\]
Let \[X = \left[ {\begin{array}{*{20}{c}}
2&0&{ - 1} \\
5&1&0 \\
0&1&3
\end{array}} \right]\]
First we will find the value of the given matrix, hence we can write
\[\left| X \right| = \left[ {\begin{array}{*{20}{c}}
2&0&{ - 1} \\
5&1&0 \\
0&1&3
\end{array}} \right] = 2\left( {3 - 0} \right) - 0\left( {5 - 0} \right) + \left( { - 1} \right)\left( {5 - 0} \right)
= 6 - 5 = 1\]
So since the value of the matrix \[\left| X \right| \ne 0\] hence we can say the inverse of the
matrix \[{X^{ - 1}}\] exists
Now we know if inverse of a matrix exists then \[A{A^{ - 1}} = {A^{ - 1}}A = I\] where \[I\] is a singular
matrix, hence we can write
\[{A^{ - 1}} = \dfrac{{adj\left( A \right)}}{{\left| A \right|}}\]
Now we substitute the value in the above equation, we can write
\[{X^{ - 1}}\left[ {\begin{array}{*{20}{c}}
2&0&{ - 1} \\
5&1&0 \\
0&1&3
\end{array}} \right] = \left[ {\begin{array}{*{20}{c}}
1&0&0 \\
0&1&0 \\
0&0&1
\end{array}} \right]\]
Now we will do the row transformation in the matrix, by applying \[{R_1} \to \left( {\dfrac{1}{2}}
\right){R_1}\]
\[{X^{ - 1}}\left[ {\begin{array}{*{20}{c}}
1&0&{ - \dfrac{1}{2}} \\
5&1&0 \\
0&1&3
\end{array}} \right] = \left[ {\begin{array}{*{20}{c}}
{\dfrac{1}{2}}&0&0 \\
0&1&0 \\
0&0&1
\end{array}} \right]\]
Now apply \[{R_2} \to {R_2} + \left( { - 5} \right){R_1}\]
\[{X^{ - 1}}\left[ {\begin{array}{*{20}{c}}
1&0&{ - \dfrac{1}{2}} \\
0&1&{\dfrac{5}{2}} \\
0&1&3
\end{array}} \right] = \left[ {\begin{array}{*{20}{c}}
{\dfrac{1}{2}}&0&0 \\
{ - \dfrac{5}{2}}&1&0 \\
0&0&1
\end{array}} \right]\]
Now apply \[{R_3} \to {R_3} + \left( { - 1} \right){R_2}\]
\[{X^{ - 1}}\left[ {\begin{array}{*{20}{c}}
1&0&{ - \dfrac{1}{2}} \\
0&1&{\dfrac{5}{2}} \\
0&0&{\dfrac{1}{2}}
\end{array}} \right] = \left[ {\begin{array}{*{20}{c}}
{\dfrac{1}{2}}&0&0 \\
{ - \dfrac{5}{2}}&1&0 \\
{\dfrac{5}{2}}&{ - 1}&1
\end{array}} \right]\]
Now apply \[{R_3} \to \left( 2 \right){R_3}\]
\[{X^{ - 1}}\left[ {\begin{array}{*{20}{c}}
1&0&{ - \dfrac{1}{2}} \\
0&1&{\dfrac{5}{2}} \\
0&0&1
\end{array}} \right] = \left[ {\begin{array}{*{20}{c}}
{\dfrac{1}{2}}&0&0 \\
{ - \dfrac{5}{2}}&1&0 \\
{\dfrac{5}{2}}&{ - 1}&2
\end{array}} \right]\]
Now we apply \[{R_1} \to {R_1} + \left( {\dfrac{1}{2}} \right){R_3}\] and \[{R_2} \to {R_2} + \left( { -
\dfrac{5}{2}} \right){R_3}\] , we get
\[{X^{ - 1}}\left[ {\begin{array}{*{20}{c}}
1&0&0 \\
0&1&0 \\
0&0&1
\end{array}} \right] = \left[ {\begin{array}{*{20}{c}}
3&{ - 1}&1 \\
{ - 15}&6&{ - 5} \\
5&{ - 2}&2
\end{array}} \right]\]
Now since \[\left[ {\begin{array}{*{20}{c}}
1&0&0 \\
0&1&0 \\
0&0&1
\end{array}} \right] = 1\] , hence we can write this equation as
\[{X^{ - 1}} = \left[ {\begin{array}{*{20}{c}}
3&{ - 1}&1 \\
{ - 15}&6&{ - 5} \\
5&{ - 2}&2
\end{array}} \right]\]
Therefore the inverse of the matrix \[\left[ {\begin{array}{*{20}{c}}
2&0&{ - 1} \\
5&1&0 \\
0&1&3
\end{array}} \right] = \left[ {\begin{array}{*{20}{c}}
3&{ - 1}&1 \\
{ - 15}&6&{ - 5} \\
5&{ - 2}&2
\end{array}} \right]\]
Note: The inverse of a matrix can also be found by using the formula \[{A^{ - 1}} = \dfrac{{adj\left( A
\right)}}{{\left| A \right|}}\] which is also known as adjoint method to find the inverse of the matrix. In this method we find the determinant value of the matrix and its joint value, so by finding their ratio we can find the inverse of the matrix.
1}} = {A^{ - 1}}A = I\]
In this question we need to find the inverse of the matrix using the elementary method. In the elementary transformation method, we start with a row or column and by applying various transformations on the chosen identity either on rows or the column we try to make maximum zeros of the identity. By using the concept of \[A{A^{ - 1}} = {A^{ - 1}}A = I\] we will find the inverse of the matrix.
Complete step by step solution:
Given the matrix whose inverse is to be find is \[\left[ {\begin{array}{*{20}{c}}
2&0&{ - 1} \\
5&1&0 \\
0&1&3
\end{array}} \right]\]
Let \[X = \left[ {\begin{array}{*{20}{c}}
2&0&{ - 1} \\
5&1&0 \\
0&1&3
\end{array}} \right]\]
First we will find the value of the given matrix, hence we can write
\[\left| X \right| = \left[ {\begin{array}{*{20}{c}}
2&0&{ - 1} \\
5&1&0 \\
0&1&3
\end{array}} \right] = 2\left( {3 - 0} \right) - 0\left( {5 - 0} \right) + \left( { - 1} \right)\left( {5 - 0} \right)
= 6 - 5 = 1\]
So since the value of the matrix \[\left| X \right| \ne 0\] hence we can say the inverse of the
matrix \[{X^{ - 1}}\] exists
Now we know if inverse of a matrix exists then \[A{A^{ - 1}} = {A^{ - 1}}A = I\] where \[I\] is a singular
matrix, hence we can write
\[{A^{ - 1}} = \dfrac{{adj\left( A \right)}}{{\left| A \right|}}\]
Now we substitute the value in the above equation, we can write
\[{X^{ - 1}}\left[ {\begin{array}{*{20}{c}}
2&0&{ - 1} \\
5&1&0 \\
0&1&3
\end{array}} \right] = \left[ {\begin{array}{*{20}{c}}
1&0&0 \\
0&1&0 \\
0&0&1
\end{array}} \right]\]
Now we will do the row transformation in the matrix, by applying \[{R_1} \to \left( {\dfrac{1}{2}}
\right){R_1}\]
\[{X^{ - 1}}\left[ {\begin{array}{*{20}{c}}
1&0&{ - \dfrac{1}{2}} \\
5&1&0 \\
0&1&3
\end{array}} \right] = \left[ {\begin{array}{*{20}{c}}
{\dfrac{1}{2}}&0&0 \\
0&1&0 \\
0&0&1
\end{array}} \right]\]
Now apply \[{R_2} \to {R_2} + \left( { - 5} \right){R_1}\]
\[{X^{ - 1}}\left[ {\begin{array}{*{20}{c}}
1&0&{ - \dfrac{1}{2}} \\
0&1&{\dfrac{5}{2}} \\
0&1&3
\end{array}} \right] = \left[ {\begin{array}{*{20}{c}}
{\dfrac{1}{2}}&0&0 \\
{ - \dfrac{5}{2}}&1&0 \\
0&0&1
\end{array}} \right]\]
Now apply \[{R_3} \to {R_3} + \left( { - 1} \right){R_2}\]
\[{X^{ - 1}}\left[ {\begin{array}{*{20}{c}}
1&0&{ - \dfrac{1}{2}} \\
0&1&{\dfrac{5}{2}} \\
0&0&{\dfrac{1}{2}}
\end{array}} \right] = \left[ {\begin{array}{*{20}{c}}
{\dfrac{1}{2}}&0&0 \\
{ - \dfrac{5}{2}}&1&0 \\
{\dfrac{5}{2}}&{ - 1}&1
\end{array}} \right]\]
Now apply \[{R_3} \to \left( 2 \right){R_3}\]
\[{X^{ - 1}}\left[ {\begin{array}{*{20}{c}}
1&0&{ - \dfrac{1}{2}} \\
0&1&{\dfrac{5}{2}} \\
0&0&1
\end{array}} \right] = \left[ {\begin{array}{*{20}{c}}
{\dfrac{1}{2}}&0&0 \\
{ - \dfrac{5}{2}}&1&0 \\
{\dfrac{5}{2}}&{ - 1}&2
\end{array}} \right]\]
Now we apply \[{R_1} \to {R_1} + \left( {\dfrac{1}{2}} \right){R_3}\] and \[{R_2} \to {R_2} + \left( { -
\dfrac{5}{2}} \right){R_3}\] , we get
\[{X^{ - 1}}\left[ {\begin{array}{*{20}{c}}
1&0&0 \\
0&1&0 \\
0&0&1
\end{array}} \right] = \left[ {\begin{array}{*{20}{c}}
3&{ - 1}&1 \\
{ - 15}&6&{ - 5} \\
5&{ - 2}&2
\end{array}} \right]\]
Now since \[\left[ {\begin{array}{*{20}{c}}
1&0&0 \\
0&1&0 \\
0&0&1
\end{array}} \right] = 1\] , hence we can write this equation as
\[{X^{ - 1}} = \left[ {\begin{array}{*{20}{c}}
3&{ - 1}&1 \\
{ - 15}&6&{ - 5} \\
5&{ - 2}&2
\end{array}} \right]\]
Therefore the inverse of the matrix \[\left[ {\begin{array}{*{20}{c}}
2&0&{ - 1} \\
5&1&0 \\
0&1&3
\end{array}} \right] = \left[ {\begin{array}{*{20}{c}}
3&{ - 1}&1 \\
{ - 15}&6&{ - 5} \\
5&{ - 2}&2
\end{array}} \right]\]
Note: The inverse of a matrix can also be found by using the formula \[{A^{ - 1}} = \dfrac{{adj\left( A
\right)}}{{\left| A \right|}}\] which is also known as adjoint method to find the inverse of the matrix. In this method we find the determinant value of the matrix and its joint value, so by finding their ratio we can find the inverse of the matrix.
Recently Updated Pages
Master Class 11 Computer Science: Engaging Questions & Answers for Success

Master Class 11 Business Studies: Engaging Questions & Answers for Success

Master Class 11 Economics: Engaging Questions & Answers for Success

Master Class 11 English: Engaging Questions & Answers for Success

Master Class 11 Maths: Engaging Questions & Answers for Success

Master Class 11 Biology: Engaging Questions & Answers for Success

Trending doubts
One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

There are 720 permutations of the digits 1 2 3 4 5 class 11 maths CBSE

Discuss the various forms of bacteria class 11 biology CBSE

Draw a diagram of a plant cell and label at least eight class 11 biology CBSE

State the laws of reflection of light

Explain zero factorial class 11 maths CBSE

