
How do you find the inverse of the function $ g(x) = 3x - 5 $ ?
Answer
531.9k+ views
Hint: Since it is a linear equation with no denominator so there is no limitations of domain or range, it can be any real number till $ \infty $ . We have to find $ {g^{ - 1}}(x) $ for the given equation. We know that $ f(x) = y $ so put this value in the given function then solve further to get $ x $ in terms of $ y $ . So equate accordingly.
Complete step-by-step answer:
We are given with the function $ g(x) = 3x - 5 $ . Since it has no denominator so the range and domain can be any real number till infinity.
We know that $ f(x) = y $ so let $ g(x) $ be $ y $ . So, we can write the function as $ y = 3x - 5 $ .
Adding both the sides by $ 5 $ we get:
$
y = 3x - 5 \\
y + 5 = 3x - 5 + 5 \\
y + 5 = 3x \;
$
Dividing both the sides by $ 3 $ we get:
$
y + 5 = 3x \\
\dfrac{{y + 5}}{3} = \dfrac{{3x}}{3} \\
\dfrac{{y + 5}}{3} = x \;
$ ……………….(i)
Since, we know that $ f(x) = y $ that implies $ {f^{ - 1}}(y) = x $ :
Put this value in the equation (i) and we get:
$
\dfrac{{y + 5}}{3} = x \\
\dfrac{{y + 5}}{3} = {f^{ - 1}}(y) \;
$
Since, we got it for $ y $ and we need $ x $ . So replace all values of $ y $ from the equation with $ x $ and we get:
$ \dfrac{{x + 5}}{3} = {f^{ - 1}}(x) $ which is the inverse of the function $ f(x) = 3x - 5 $ .
Similarly, for this function $ g(x) = 3x - 5 $ , the inverse is $ {g^{ - 1}}(x) = \dfrac{{x + 5}}{3} $ .
So, the correct answer is “ $ \dfrac{{x + 5}}{3} $ .”.
Note: Since we know that $ fo{f^{ - 1}}(x) = x $ , so it should be the same for $ go{g^{ - 1}}(x) = x $ .
Let’s check it out for $ go{g^{ - 1}}(x) = x $ .
$ go{g^{ - 1}}(x) = x $ can be written as $ g({g^{ - 1}}(x)) = x $ .
Solve for left hand side to prove it same as right hand side:
L.H.S $ = g({g^{ - 1}}(x)) $
Put the value of $ {g^{ - 1}}(x) $ above and we get:
$ = g(\dfrac{{x + 5}}{3}) $
Now put the value of $ \dfrac{{x + 5}}{3} $ in $ g(x) $ and we get:
$
3\left( {\dfrac{{x + 5}}{3}} \right) - 5 \\
x + 5 - 5 \\
x \;
$
Which is equal to R.H.S.
Therefore, the inverse $ {g^{ - 1}}(x) = \dfrac{{x + 5}}{3} $ for the given function $ g(x) = 3x - 5 $ is correct.
Complete step-by-step answer:
We are given with the function $ g(x) = 3x - 5 $ . Since it has no denominator so the range and domain can be any real number till infinity.
We know that $ f(x) = y $ so let $ g(x) $ be $ y $ . So, we can write the function as $ y = 3x - 5 $ .
Adding both the sides by $ 5 $ we get:
$
y = 3x - 5 \\
y + 5 = 3x - 5 + 5 \\
y + 5 = 3x \;
$
Dividing both the sides by $ 3 $ we get:
$
y + 5 = 3x \\
\dfrac{{y + 5}}{3} = \dfrac{{3x}}{3} \\
\dfrac{{y + 5}}{3} = x \;
$ ……………….(i)
Since, we know that $ f(x) = y $ that implies $ {f^{ - 1}}(y) = x $ :
Put this value in the equation (i) and we get:
$
\dfrac{{y + 5}}{3} = x \\
\dfrac{{y + 5}}{3} = {f^{ - 1}}(y) \;
$
Since, we got it for $ y $ and we need $ x $ . So replace all values of $ y $ from the equation with $ x $ and we get:
$ \dfrac{{x + 5}}{3} = {f^{ - 1}}(x) $ which is the inverse of the function $ f(x) = 3x - 5 $ .
Similarly, for this function $ g(x) = 3x - 5 $ , the inverse is $ {g^{ - 1}}(x) = \dfrac{{x + 5}}{3} $ .
So, the correct answer is “ $ \dfrac{{x + 5}}{3} $ .”.
Note: Since we know that $ fo{f^{ - 1}}(x) = x $ , so it should be the same for $ go{g^{ - 1}}(x) = x $ .
Let’s check it out for $ go{g^{ - 1}}(x) = x $ .
$ go{g^{ - 1}}(x) = x $ can be written as $ g({g^{ - 1}}(x)) = x $ .
Solve for left hand side to prove it same as right hand side:
L.H.S $ = g({g^{ - 1}}(x)) $
Put the value of $ {g^{ - 1}}(x) $ above and we get:
$ = g(\dfrac{{x + 5}}{3}) $
Now put the value of $ \dfrac{{x + 5}}{3} $ in $ g(x) $ and we get:
$
3\left( {\dfrac{{x + 5}}{3}} \right) - 5 \\
x + 5 - 5 \\
x \;
$
Which is equal to R.H.S.
Therefore, the inverse $ {g^{ - 1}}(x) = \dfrac{{x + 5}}{3} $ for the given function $ g(x) = 3x - 5 $ is correct.
Recently Updated Pages
Master Class 10 Computer Science: Engaging Questions & Answers for Success

Master Class 10 General Knowledge: Engaging Questions & Answers for Success

Master Class 10 English: Engaging Questions & Answers for Success

Master Class 10 Social Science: Engaging Questions & Answers for Success

Master Class 10 Maths: Engaging Questions & Answers for Success

Master Class 10 Science: Engaging Questions & Answers for Success

Trending doubts
What is the median of the first 10 natural numbers class 10 maths CBSE

The draft of the Preamble of the Indian Constitution class 10 social science CBSE

Who gave "Inqilab Zindabad" slogan?

Why is there a time difference of about 5 hours between class 10 social science CBSE

Write a letter to the principal requesting him to grant class 10 english CBSE

The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths

