
Find the inverse of following matrix using elementary row transformation:
$\left[ \begin{matrix}
5 & 2 \\
2 & 1 \\
\end{matrix} \right]$
Answer
587.1k+ views
Hint: In elementary row transformation we always try to write a given matrix in the form of $A{{A}^{-1}}=I$ by using transformation either in row or column.
Complete step-by-step answer:
The given matrix is A.
So we can write
$A=\left[ \begin{matrix}
5 & 2 \\
2 & 1 \\
\end{matrix} \right]$
By property of matrix we can write
$\Rightarrow A=AI$
Hence we have
$\Rightarrow \left[ \begin{matrix}
5 & 2 \\
2 & 1 \\
\end{matrix} \right]=A\left[ \begin{matrix}
1 & 0 \\
0 & 1 \\
\end{matrix} \right]$ because I is a unit matrix.
Now we will try to convert the left hand side matrix as a unit matrix by using transformation of row or columns. We will do the same changes in the right hand side unit matrix.
We can divide row 1 by 5 to make 5 as 1.
${{R}_{1}}\to \dfrac{{{R}_{1}}}{5}$
$\Rightarrow \left[ \begin{matrix}
1 & \dfrac{2}{5} \\
2 & 1 \\
\end{matrix} \right]=A\left[ \begin{matrix}
\dfrac{1}{5} & 0 \\
0 & 1 \\
\end{matrix} \right]$
Now to make 2 as zero in row 2 we can subtract row 2 by 2 times of row 1.
${{R}_{2}}\to {{R}_{2}}-2{{R}_{1}}$
$\Rightarrow \left[ \begin{matrix}
1 & \dfrac{2}{5} \\
2-2\times 1 & 1-\dfrac{4}{5} \\
\end{matrix} \right]=A\left[ \begin{matrix}
\dfrac{1}{5} & 0 \\
0-\dfrac{2}{5} & 1-2\times 0 \\
\end{matrix} \right]$
$\Rightarrow \left[ \begin{matrix}
1 & \dfrac{2}{5} \\
0 & \dfrac{1}{5} \\
\end{matrix} \right]=A\left[ \begin{matrix}
\dfrac{1}{5} & 0 \\
\dfrac{-2}{5} & 1 \\
\end{matrix} \right]$
Now we can subtract 2 times of row 2 from row 1 to make $\dfrac{2}{5}$ as zero.
${{R}_{1}}\to {{R}_{1}}-2{{R}_{2}}$
$\Rightarrow \left[ \begin{matrix}
1-2\times 0 & \dfrac{2}{5}-2\times \dfrac{1}{5} \\
0 & \dfrac{1}{5} \\
\end{matrix} \right]=A\left[ \begin{matrix}
\dfrac{1}{5}-2\times \dfrac{-2}{5} & 0-2\times 1 \\
\dfrac{-2}{5} & 1 \\
\end{matrix} \right]$
$\Rightarrow \left[ \begin{matrix}
1 & 0 \\
0 & \dfrac{1}{5} \\
\end{matrix} \right]=A\left[ \begin{matrix}
1 & -2 \\
\dfrac{-2}{5} & 1 \\
\end{matrix} \right]$
Now we can multiply row 2 by 5
${{R}_{2}}\to 5\times {{R}_{2}}$
$\Rightarrow \left[ \begin{matrix}
1 & 0 \\
0\times 5 & \dfrac{1}{5}\times 5 \\
\end{matrix} \right]=A\left[ \begin{matrix}
1 & -2 \\
\dfrac{-2}{5}\times 5 & 1\times 5 \\
\end{matrix} \right]$
$\Rightarrow \left[ \begin{matrix}
1 & 0 \\
0 & 1 \\
\end{matrix} \right]=A\left[ \begin{matrix}
1 & -2 \\
-2 & 5 \\
\end{matrix} \right]$
Now it is in form of $I=A{{A}^{-1}}$
Hence inverse of given matrix is
${{A}^{-1}}=\left[ \begin{matrix}
1 & -2 \\
-2 & 5 \\
\end{matrix} \right]$
Note: To find the inverse of any matrix , matrix should be square matrix means number of rows equal to number of columns in matrix.
We can do either row transformation or column transformation at a time. We can’t do both together.
Complete step-by-step answer:
The given matrix is A.
So we can write
$A=\left[ \begin{matrix}
5 & 2 \\
2 & 1 \\
\end{matrix} \right]$
By property of matrix we can write
$\Rightarrow A=AI$
Hence we have
$\Rightarrow \left[ \begin{matrix}
5 & 2 \\
2 & 1 \\
\end{matrix} \right]=A\left[ \begin{matrix}
1 & 0 \\
0 & 1 \\
\end{matrix} \right]$ because I is a unit matrix.
Now we will try to convert the left hand side matrix as a unit matrix by using transformation of row or columns. We will do the same changes in the right hand side unit matrix.
We can divide row 1 by 5 to make 5 as 1.
${{R}_{1}}\to \dfrac{{{R}_{1}}}{5}$
$\Rightarrow \left[ \begin{matrix}
1 & \dfrac{2}{5} \\
2 & 1 \\
\end{matrix} \right]=A\left[ \begin{matrix}
\dfrac{1}{5} & 0 \\
0 & 1 \\
\end{matrix} \right]$
Now to make 2 as zero in row 2 we can subtract row 2 by 2 times of row 1.
${{R}_{2}}\to {{R}_{2}}-2{{R}_{1}}$
$\Rightarrow \left[ \begin{matrix}
1 & \dfrac{2}{5} \\
2-2\times 1 & 1-\dfrac{4}{5} \\
\end{matrix} \right]=A\left[ \begin{matrix}
\dfrac{1}{5} & 0 \\
0-\dfrac{2}{5} & 1-2\times 0 \\
\end{matrix} \right]$
$\Rightarrow \left[ \begin{matrix}
1 & \dfrac{2}{5} \\
0 & \dfrac{1}{5} \\
\end{matrix} \right]=A\left[ \begin{matrix}
\dfrac{1}{5} & 0 \\
\dfrac{-2}{5} & 1 \\
\end{matrix} \right]$
Now we can subtract 2 times of row 2 from row 1 to make $\dfrac{2}{5}$ as zero.
${{R}_{1}}\to {{R}_{1}}-2{{R}_{2}}$
$\Rightarrow \left[ \begin{matrix}
1-2\times 0 & \dfrac{2}{5}-2\times \dfrac{1}{5} \\
0 & \dfrac{1}{5} \\
\end{matrix} \right]=A\left[ \begin{matrix}
\dfrac{1}{5}-2\times \dfrac{-2}{5} & 0-2\times 1 \\
\dfrac{-2}{5} & 1 \\
\end{matrix} \right]$
$\Rightarrow \left[ \begin{matrix}
1 & 0 \\
0 & \dfrac{1}{5} \\
\end{matrix} \right]=A\left[ \begin{matrix}
1 & -2 \\
\dfrac{-2}{5} & 1 \\
\end{matrix} \right]$
Now we can multiply row 2 by 5
${{R}_{2}}\to 5\times {{R}_{2}}$
$\Rightarrow \left[ \begin{matrix}
1 & 0 \\
0\times 5 & \dfrac{1}{5}\times 5 \\
\end{matrix} \right]=A\left[ \begin{matrix}
1 & -2 \\
\dfrac{-2}{5}\times 5 & 1\times 5 \\
\end{matrix} \right]$
$\Rightarrow \left[ \begin{matrix}
1 & 0 \\
0 & 1 \\
\end{matrix} \right]=A\left[ \begin{matrix}
1 & -2 \\
-2 & 5 \\
\end{matrix} \right]$
Now it is in form of $I=A{{A}^{-1}}$
Hence inverse of given matrix is
${{A}^{-1}}=\left[ \begin{matrix}
1 & -2 \\
-2 & 5 \\
\end{matrix} \right]$
Note: To find the inverse of any matrix , matrix should be square matrix means number of rows equal to number of columns in matrix.
We can do either row transformation or column transformation at a time. We can’t do both together.
Recently Updated Pages
Basicity of sulphurous acid and sulphuric acid are

Master Class 9 General Knowledge: Engaging Questions & Answers for Success

Master Class 9 English: Engaging Questions & Answers for Success

Master Class 9 Science: Engaging Questions & Answers for Success

Class 9 Question and Answer - Your Ultimate Solutions Guide

Master Class 12 Business Studies: Engaging Questions & Answers for Success

Trending doubts
What is meant by exothermic and endothermic reactions class 11 chemistry CBSE

Which animal has three hearts class 11 biology CBSE

10 examples of friction in our daily life

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

1 Quintal is equal to a 110 kg b 10 kg c 100kg d 1000 class 11 physics CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells

