
Find the inverse of following matrix using elementary row transformation:
$\left[ \begin{matrix}
5 & 2 \\
2 & 1 \\
\end{matrix} \right]$
Answer
538.5k+ views
Hint: In elementary row transformation we always try to write a given matrix in the form of $A{{A}^{-1}}=I$ by using transformation either in row or column.
Complete step-by-step answer:
The given matrix is A.
So we can write
$A=\left[ \begin{matrix}
5 & 2 \\
2 & 1 \\
\end{matrix} \right]$
By property of matrix we can write
$\Rightarrow A=AI$
Hence we have
$\Rightarrow \left[ \begin{matrix}
5 & 2 \\
2 & 1 \\
\end{matrix} \right]=A\left[ \begin{matrix}
1 & 0 \\
0 & 1 \\
\end{matrix} \right]$ because I is a unit matrix.
Now we will try to convert the left hand side matrix as a unit matrix by using transformation of row or columns. We will do the same changes in the right hand side unit matrix.
We can divide row 1 by 5 to make 5 as 1.
${{R}_{1}}\to \dfrac{{{R}_{1}}}{5}$
$\Rightarrow \left[ \begin{matrix}
1 & \dfrac{2}{5} \\
2 & 1 \\
\end{matrix} \right]=A\left[ \begin{matrix}
\dfrac{1}{5} & 0 \\
0 & 1 \\
\end{matrix} \right]$
Now to make 2 as zero in row 2 we can subtract row 2 by 2 times of row 1.
${{R}_{2}}\to {{R}_{2}}-2{{R}_{1}}$
$\Rightarrow \left[ \begin{matrix}
1 & \dfrac{2}{5} \\
2-2\times 1 & 1-\dfrac{4}{5} \\
\end{matrix} \right]=A\left[ \begin{matrix}
\dfrac{1}{5} & 0 \\
0-\dfrac{2}{5} & 1-2\times 0 \\
\end{matrix} \right]$
$\Rightarrow \left[ \begin{matrix}
1 & \dfrac{2}{5} \\
0 & \dfrac{1}{5} \\
\end{matrix} \right]=A\left[ \begin{matrix}
\dfrac{1}{5} & 0 \\
\dfrac{-2}{5} & 1 \\
\end{matrix} \right]$
Now we can subtract 2 times of row 2 from row 1 to make $\dfrac{2}{5}$ as zero.
${{R}_{1}}\to {{R}_{1}}-2{{R}_{2}}$
$\Rightarrow \left[ \begin{matrix}
1-2\times 0 & \dfrac{2}{5}-2\times \dfrac{1}{5} \\
0 & \dfrac{1}{5} \\
\end{matrix} \right]=A\left[ \begin{matrix}
\dfrac{1}{5}-2\times \dfrac{-2}{5} & 0-2\times 1 \\
\dfrac{-2}{5} & 1 \\
\end{matrix} \right]$
$\Rightarrow \left[ \begin{matrix}
1 & 0 \\
0 & \dfrac{1}{5} \\
\end{matrix} \right]=A\left[ \begin{matrix}
1 & -2 \\
\dfrac{-2}{5} & 1 \\
\end{matrix} \right]$
Now we can multiply row 2 by 5
${{R}_{2}}\to 5\times {{R}_{2}}$
$\Rightarrow \left[ \begin{matrix}
1 & 0 \\
0\times 5 & \dfrac{1}{5}\times 5 \\
\end{matrix} \right]=A\left[ \begin{matrix}
1 & -2 \\
\dfrac{-2}{5}\times 5 & 1\times 5 \\
\end{matrix} \right]$
$\Rightarrow \left[ \begin{matrix}
1 & 0 \\
0 & 1 \\
\end{matrix} \right]=A\left[ \begin{matrix}
1 & -2 \\
-2 & 5 \\
\end{matrix} \right]$
Now it is in form of $I=A{{A}^{-1}}$
Hence inverse of given matrix is
${{A}^{-1}}=\left[ \begin{matrix}
1 & -2 \\
-2 & 5 \\
\end{matrix} \right]$
Note: To find the inverse of any matrix , matrix should be square matrix means number of rows equal to number of columns in matrix.
We can do either row transformation or column transformation at a time. We can’t do both together.
Complete step-by-step answer:
The given matrix is A.
So we can write
$A=\left[ \begin{matrix}
5 & 2 \\
2 & 1 \\
\end{matrix} \right]$
By property of matrix we can write
$\Rightarrow A=AI$
Hence we have
$\Rightarrow \left[ \begin{matrix}
5 & 2 \\
2 & 1 \\
\end{matrix} \right]=A\left[ \begin{matrix}
1 & 0 \\
0 & 1 \\
\end{matrix} \right]$ because I is a unit matrix.
Now we will try to convert the left hand side matrix as a unit matrix by using transformation of row or columns. We will do the same changes in the right hand side unit matrix.
We can divide row 1 by 5 to make 5 as 1.
${{R}_{1}}\to \dfrac{{{R}_{1}}}{5}$
$\Rightarrow \left[ \begin{matrix}
1 & \dfrac{2}{5} \\
2 & 1 \\
\end{matrix} \right]=A\left[ \begin{matrix}
\dfrac{1}{5} & 0 \\
0 & 1 \\
\end{matrix} \right]$
Now to make 2 as zero in row 2 we can subtract row 2 by 2 times of row 1.
${{R}_{2}}\to {{R}_{2}}-2{{R}_{1}}$
$\Rightarrow \left[ \begin{matrix}
1 & \dfrac{2}{5} \\
2-2\times 1 & 1-\dfrac{4}{5} \\
\end{matrix} \right]=A\left[ \begin{matrix}
\dfrac{1}{5} & 0 \\
0-\dfrac{2}{5} & 1-2\times 0 \\
\end{matrix} \right]$
$\Rightarrow \left[ \begin{matrix}
1 & \dfrac{2}{5} \\
0 & \dfrac{1}{5} \\
\end{matrix} \right]=A\left[ \begin{matrix}
\dfrac{1}{5} & 0 \\
\dfrac{-2}{5} & 1 \\
\end{matrix} \right]$
Now we can subtract 2 times of row 2 from row 1 to make $\dfrac{2}{5}$ as zero.
${{R}_{1}}\to {{R}_{1}}-2{{R}_{2}}$
$\Rightarrow \left[ \begin{matrix}
1-2\times 0 & \dfrac{2}{5}-2\times \dfrac{1}{5} \\
0 & \dfrac{1}{5} \\
\end{matrix} \right]=A\left[ \begin{matrix}
\dfrac{1}{5}-2\times \dfrac{-2}{5} & 0-2\times 1 \\
\dfrac{-2}{5} & 1 \\
\end{matrix} \right]$
$\Rightarrow \left[ \begin{matrix}
1 & 0 \\
0 & \dfrac{1}{5} \\
\end{matrix} \right]=A\left[ \begin{matrix}
1 & -2 \\
\dfrac{-2}{5} & 1 \\
\end{matrix} \right]$
Now we can multiply row 2 by 5
${{R}_{2}}\to 5\times {{R}_{2}}$
$\Rightarrow \left[ \begin{matrix}
1 & 0 \\
0\times 5 & \dfrac{1}{5}\times 5 \\
\end{matrix} \right]=A\left[ \begin{matrix}
1 & -2 \\
\dfrac{-2}{5}\times 5 & 1\times 5 \\
\end{matrix} \right]$
$\Rightarrow \left[ \begin{matrix}
1 & 0 \\
0 & 1 \\
\end{matrix} \right]=A\left[ \begin{matrix}
1 & -2 \\
-2 & 5 \\
\end{matrix} \right]$
Now it is in form of $I=A{{A}^{-1}}$
Hence inverse of given matrix is
${{A}^{-1}}=\left[ \begin{matrix}
1 & -2 \\
-2 & 5 \\
\end{matrix} \right]$
Note: To find the inverse of any matrix , matrix should be square matrix means number of rows equal to number of columns in matrix.
We can do either row transformation or column transformation at a time. We can’t do both together.
Recently Updated Pages
Master Class 11 Economics: Engaging Questions & Answers for Success

Master Class 11 Accountancy: Engaging Questions & Answers for Success

Master Class 11 English: Engaging Questions & Answers for Success

Master Class 11 Social Science: Engaging Questions & Answers for Success

Master Class 11 Biology: Engaging Questions & Answers for Success

Master Class 11 Physics: Engaging Questions & Answers for Success

Trending doubts
1 ton equals to A 100 kg B 1000 kg C 10 kg D 10000 class 11 physics CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

Draw a diagram of nephron and explain its structur class 11 biology CBSE

Explain zero factorial class 11 maths CBSE

What is the type of food and mode of feeding of the class 11 biology CBSE
