
Find the inverse of following matrix using elementary row transformation:
$\left[ \begin{matrix}
5 & 2 \\
2 & 1 \\
\end{matrix} \right]$
Answer
585.3k+ views
Hint: In elementary row transformation we always try to write a given matrix in the form of $A{{A}^{-1}}=I$ by using transformation either in row or column.
Complete step-by-step answer:
The given matrix is A.
So we can write
$A=\left[ \begin{matrix}
5 & 2 \\
2 & 1 \\
\end{matrix} \right]$
By property of matrix we can write
$\Rightarrow A=AI$
Hence we have
$\Rightarrow \left[ \begin{matrix}
5 & 2 \\
2 & 1 \\
\end{matrix} \right]=A\left[ \begin{matrix}
1 & 0 \\
0 & 1 \\
\end{matrix} \right]$ because I is a unit matrix.
Now we will try to convert the left hand side matrix as a unit matrix by using transformation of row or columns. We will do the same changes in the right hand side unit matrix.
We can divide row 1 by 5 to make 5 as 1.
${{R}_{1}}\to \dfrac{{{R}_{1}}}{5}$
$\Rightarrow \left[ \begin{matrix}
1 & \dfrac{2}{5} \\
2 & 1 \\
\end{matrix} \right]=A\left[ \begin{matrix}
\dfrac{1}{5} & 0 \\
0 & 1 \\
\end{matrix} \right]$
Now to make 2 as zero in row 2 we can subtract row 2 by 2 times of row 1.
${{R}_{2}}\to {{R}_{2}}-2{{R}_{1}}$
$\Rightarrow \left[ \begin{matrix}
1 & \dfrac{2}{5} \\
2-2\times 1 & 1-\dfrac{4}{5} \\
\end{matrix} \right]=A\left[ \begin{matrix}
\dfrac{1}{5} & 0 \\
0-\dfrac{2}{5} & 1-2\times 0 \\
\end{matrix} \right]$
$\Rightarrow \left[ \begin{matrix}
1 & \dfrac{2}{5} \\
0 & \dfrac{1}{5} \\
\end{matrix} \right]=A\left[ \begin{matrix}
\dfrac{1}{5} & 0 \\
\dfrac{-2}{5} & 1 \\
\end{matrix} \right]$
Now we can subtract 2 times of row 2 from row 1 to make $\dfrac{2}{5}$ as zero.
${{R}_{1}}\to {{R}_{1}}-2{{R}_{2}}$
$\Rightarrow \left[ \begin{matrix}
1-2\times 0 & \dfrac{2}{5}-2\times \dfrac{1}{5} \\
0 & \dfrac{1}{5} \\
\end{matrix} \right]=A\left[ \begin{matrix}
\dfrac{1}{5}-2\times \dfrac{-2}{5} & 0-2\times 1 \\
\dfrac{-2}{5} & 1 \\
\end{matrix} \right]$
$\Rightarrow \left[ \begin{matrix}
1 & 0 \\
0 & \dfrac{1}{5} \\
\end{matrix} \right]=A\left[ \begin{matrix}
1 & -2 \\
\dfrac{-2}{5} & 1 \\
\end{matrix} \right]$
Now we can multiply row 2 by 5
${{R}_{2}}\to 5\times {{R}_{2}}$
$\Rightarrow \left[ \begin{matrix}
1 & 0 \\
0\times 5 & \dfrac{1}{5}\times 5 \\
\end{matrix} \right]=A\left[ \begin{matrix}
1 & -2 \\
\dfrac{-2}{5}\times 5 & 1\times 5 \\
\end{matrix} \right]$
$\Rightarrow \left[ \begin{matrix}
1 & 0 \\
0 & 1 \\
\end{matrix} \right]=A\left[ \begin{matrix}
1 & -2 \\
-2 & 5 \\
\end{matrix} \right]$
Now it is in form of $I=A{{A}^{-1}}$
Hence inverse of given matrix is
${{A}^{-1}}=\left[ \begin{matrix}
1 & -2 \\
-2 & 5 \\
\end{matrix} \right]$
Note: To find the inverse of any matrix , matrix should be square matrix means number of rows equal to number of columns in matrix.
We can do either row transformation or column transformation at a time. We can’t do both together.
Complete step-by-step answer:
The given matrix is A.
So we can write
$A=\left[ \begin{matrix}
5 & 2 \\
2 & 1 \\
\end{matrix} \right]$
By property of matrix we can write
$\Rightarrow A=AI$
Hence we have
$\Rightarrow \left[ \begin{matrix}
5 & 2 \\
2 & 1 \\
\end{matrix} \right]=A\left[ \begin{matrix}
1 & 0 \\
0 & 1 \\
\end{matrix} \right]$ because I is a unit matrix.
Now we will try to convert the left hand side matrix as a unit matrix by using transformation of row or columns. We will do the same changes in the right hand side unit matrix.
We can divide row 1 by 5 to make 5 as 1.
${{R}_{1}}\to \dfrac{{{R}_{1}}}{5}$
$\Rightarrow \left[ \begin{matrix}
1 & \dfrac{2}{5} \\
2 & 1 \\
\end{matrix} \right]=A\left[ \begin{matrix}
\dfrac{1}{5} & 0 \\
0 & 1 \\
\end{matrix} \right]$
Now to make 2 as zero in row 2 we can subtract row 2 by 2 times of row 1.
${{R}_{2}}\to {{R}_{2}}-2{{R}_{1}}$
$\Rightarrow \left[ \begin{matrix}
1 & \dfrac{2}{5} \\
2-2\times 1 & 1-\dfrac{4}{5} \\
\end{matrix} \right]=A\left[ \begin{matrix}
\dfrac{1}{5} & 0 \\
0-\dfrac{2}{5} & 1-2\times 0 \\
\end{matrix} \right]$
$\Rightarrow \left[ \begin{matrix}
1 & \dfrac{2}{5} \\
0 & \dfrac{1}{5} \\
\end{matrix} \right]=A\left[ \begin{matrix}
\dfrac{1}{5} & 0 \\
\dfrac{-2}{5} & 1 \\
\end{matrix} \right]$
Now we can subtract 2 times of row 2 from row 1 to make $\dfrac{2}{5}$ as zero.
${{R}_{1}}\to {{R}_{1}}-2{{R}_{2}}$
$\Rightarrow \left[ \begin{matrix}
1-2\times 0 & \dfrac{2}{5}-2\times \dfrac{1}{5} \\
0 & \dfrac{1}{5} \\
\end{matrix} \right]=A\left[ \begin{matrix}
\dfrac{1}{5}-2\times \dfrac{-2}{5} & 0-2\times 1 \\
\dfrac{-2}{5} & 1 \\
\end{matrix} \right]$
$\Rightarrow \left[ \begin{matrix}
1 & 0 \\
0 & \dfrac{1}{5} \\
\end{matrix} \right]=A\left[ \begin{matrix}
1 & -2 \\
\dfrac{-2}{5} & 1 \\
\end{matrix} \right]$
Now we can multiply row 2 by 5
${{R}_{2}}\to 5\times {{R}_{2}}$
$\Rightarrow \left[ \begin{matrix}
1 & 0 \\
0\times 5 & \dfrac{1}{5}\times 5 \\
\end{matrix} \right]=A\left[ \begin{matrix}
1 & -2 \\
\dfrac{-2}{5}\times 5 & 1\times 5 \\
\end{matrix} \right]$
$\Rightarrow \left[ \begin{matrix}
1 & 0 \\
0 & 1 \\
\end{matrix} \right]=A\left[ \begin{matrix}
1 & -2 \\
-2 & 5 \\
\end{matrix} \right]$
Now it is in form of $I=A{{A}^{-1}}$
Hence inverse of given matrix is
${{A}^{-1}}=\left[ \begin{matrix}
1 & -2 \\
-2 & 5 \\
\end{matrix} \right]$
Note: To find the inverse of any matrix , matrix should be square matrix means number of rows equal to number of columns in matrix.
We can do either row transformation or column transformation at a time. We can’t do both together.
Recently Updated Pages
Master Class 12 Business Studies: Engaging Questions & Answers for Success

Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 English: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 12 Social Science: Engaging Questions & Answers for Success

Master Class 12 Chemistry: Engaging Questions & Answers for Success

Trending doubts
Which animal has three hearts class 11 biology CBSE

1 Quintal is equal to a 110 kg b 10 kg c 100kg d 1000 class 11 physics CBSE

The camels hump is made of which tissues a Skeletal class 11 biology CBSE

Discuss the various forms of bacteria class 11 biology CBSE

Bond order ofO2 O2+ O2 and O22 is in order A O2 langle class 11 chemistry CBSE

Draw a diagram of nephron and explain its structur class 11 biology CBSE

