Answer
Verified
420k+ views
Hint Intensity of the wave at a point can be defined as the amount of sound passing per second normally through unit area at that point. As the ratio of amplitude is given so, intensity is directly proportional to the square of amplitude.
Complete step by step answer:
The phenomenon in which two waves superpose and form a great resultant wave of greater, lower or the same amplitude is known as interference. Constructive and destructive interference occurs when the two waves interact which are coherent with each other because they came back from the same source or they have nearly the same frequency.
As the ratio of amplitude is given in the question, so, let’s see something about amplitude –
The amplitude of the wave can be defined as the displacement of the particle on the medium from its rest position. In other words, it can also be defined as the distance from rest to crest. Similarly, the amplitude can be measured from the rest position to the trough position.
As we have to find the intensity so, let’s look at the intensity –
Intensity of the wave at a point can be defined as the amount of sound passing per second normally through the unit area at that point. It can also be the combination of rate of wave and density of transfer of energy.
Now, we know that intensity is directly proportional to the square of amplitude. Mathematically, it can be represented as –
$ \Rightarrow I\alpha {A^2}$
This can be rewritten as –
$I\alpha \dfrac{{{{\left( {{A_{\max }} + {A_{\min }}} \right)}^2}}}{{{{\left( {{A_{\max }} - {A_{\min }}} \right)}^2}}}$
Neglecting constant value –
$I = \dfrac{{{{\left( {{A_{\max }} + {A_{\min }}} \right)}^2}}}{{{{\left( {{A_{\max }} - {A_{\min }}} \right)}^2}}}$
Putting the value of maximum amplitude and minimum amplitude, we get –
$
\Rightarrow I = \dfrac{{{{\left( {9 + 7} \right)}^2}}}{{{{\left( {9 - 7} \right)}^2}}} \\
\Rightarrow I = \dfrac{{{{16}^2}}}{{{2^2}}} = \dfrac{{256}}{4} \\
\therefore I = 64 \\
$
Hence, we got the value of intensity as $64$.
Note The relation between intensity and amplitude is –
$
I = \dfrac{1}{2}\tau k\omega {A^2} \\
\Rightarrow I\alpha {A^2} \\
$
The factor $\dfrac{1}{2}\tau k\omega $ is replaced by the proportionality constant $\alpha $. This is done because for waves which are not waves on a string, we end up with factors other than $\tau $ to describe the medium of propagation.
Complete step by step answer:
The phenomenon in which two waves superpose and form a great resultant wave of greater, lower or the same amplitude is known as interference. Constructive and destructive interference occurs when the two waves interact which are coherent with each other because they came back from the same source or they have nearly the same frequency.
As the ratio of amplitude is given in the question, so, let’s see something about amplitude –
The amplitude of the wave can be defined as the displacement of the particle on the medium from its rest position. In other words, it can also be defined as the distance from rest to crest. Similarly, the amplitude can be measured from the rest position to the trough position.
As we have to find the intensity so, let’s look at the intensity –
Intensity of the wave at a point can be defined as the amount of sound passing per second normally through the unit area at that point. It can also be the combination of rate of wave and density of transfer of energy.
Now, we know that intensity is directly proportional to the square of amplitude. Mathematically, it can be represented as –
$ \Rightarrow I\alpha {A^2}$
This can be rewritten as –
$I\alpha \dfrac{{{{\left( {{A_{\max }} + {A_{\min }}} \right)}^2}}}{{{{\left( {{A_{\max }} - {A_{\min }}} \right)}^2}}}$
Neglecting constant value –
$I = \dfrac{{{{\left( {{A_{\max }} + {A_{\min }}} \right)}^2}}}{{{{\left( {{A_{\max }} - {A_{\min }}} \right)}^2}}}$
Putting the value of maximum amplitude and minimum amplitude, we get –
$
\Rightarrow I = \dfrac{{{{\left( {9 + 7} \right)}^2}}}{{{{\left( {9 - 7} \right)}^2}}} \\
\Rightarrow I = \dfrac{{{{16}^2}}}{{{2^2}}} = \dfrac{{256}}{4} \\
\therefore I = 64 \\
$
Hence, we got the value of intensity as $64$.
Note The relation between intensity and amplitude is –
$
I = \dfrac{1}{2}\tau k\omega {A^2} \\
\Rightarrow I\alpha {A^2} \\
$
The factor $\dfrac{1}{2}\tau k\omega $ is replaced by the proportionality constant $\alpha $. This is done because for waves which are not waves on a string, we end up with factors other than $\tau $ to describe the medium of propagation.
Recently Updated Pages
How many sigma and pi bonds are present in HCequiv class 11 chemistry CBSE
Mark and label the given geoinformation on the outline class 11 social science CBSE
When people say No pun intended what does that mea class 8 english CBSE
Name the states which share their boundary with Indias class 9 social science CBSE
Give an account of the Northern Plains of India class 9 social science CBSE
Change the following sentences into negative and interrogative class 10 english CBSE
Trending doubts
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE
Difference Between Plant Cell and Animal Cell
Which are the Top 10 Largest Countries of the World?
10 examples of evaporation in daily life with explanations
Give 10 examples for herbs , shrubs , climbers , creepers
Write a letter to the principal requesting him to grant class 10 english CBSE
Change the following sentences into negative and interrogative class 10 english CBSE