
Find the integral value of x, if $\left| \begin{matrix}
{{x}^{2}} & x & 1 \\
0 & 2 & 1 \\
3 & 1 & 4 \\
\end{matrix} \right|=28$
Answer
606.3k+ views
Hint: Any determinant of $3\times 3$ order $\left| \begin{matrix}
{{x}_{1}} & {{y}_{1}} & {{z}_{1}} \\
{{x}_{2}} & {{y}_{2}} & {{z}_{2}} \\
{{x}_{3}} & {{y}_{3}} & {{z}_{3}} \\
\end{matrix} \right|$ is given along column 1 as
${{x}_{1}}\left( {{y}_{2}}{{z}_{3}}-{{z}_{3}}{{y}_{2}} \right)-{{x}_{2}}\left( {{y}_{1}}{{z}_{3}}-{{y}_{3}}{{z}_{1}} \right)+{{x}_{3}}\left( {{y}_{1}}{{z}_{2}}-{{y}_{2}}{{z}_{1}} \right)$
Complete step-by-step answer:
Use the above rule for expansion of the given determinant and use the quadratic formula to get roots of the formed quadratic equation.
Given expression in the problem is
$\left| \begin{matrix}
{{x}^{2}} & x & 1 \\
0 & 2 & 1 \\
3 & 1 & 4 \\
\end{matrix} \right|=28.............................\left( i \right)$
As we know the expansion of any determinant $\left| \begin{matrix}
{{x}_{1}} & {{y}_{1}} & {{z}_{1}} \\
{{x}_{2}} & {{y}_{2}} & {{z}_{2}} \\
{{x}_{3}} & {{y}_{3}} & {{z}_{3}} \\
\end{matrix} \right|$ is given along column 1 as
$={{x}_{1}}\left( {{y}_{2}}{{z}_{3}}-{{z}_{3}}{{y}_{2}} \right)-{{x}_{2}}\left( {{y}_{1}}{{z}_{3}}-{{y}_{3}}{{z}_{1}} \right)+{{x}_{3}}\left( {{y}_{1}}{{z}_{2}}-{{y}_{2}}{{z}_{1}} \right)..........................\left( ii \right)$
Hence, we can calculate the expansion of the given determinant in equation (i) along column 1 as
${{x}^{2}}\left( 2\times 4-1\times 1 \right)-0\left( x\times 4-1\times 1 \right)+3\left( x\times 1-2\times 1 \right)=28$
On simplifying the terms of the above equation as
$\begin{align}
& {{x}^{2}}\left( 8-1 \right)-0+3\left( x-2 \right)=28 \\
& 7{{x}^{2}}+3x-6=28 \\
& 7{{x}^{2}}+3x-34=0.............................\left( iii \right) \\
\end{align}$
As we know the roots of the quadratic $A{{x}^{2}}+Bx+C=0$ is given by the quadratic formula as
$x=\dfrac{-B\pm \sqrt{{{B}^{2}}-4AC}}{2A}...............................\left( iv \right)$
Now, we can compare the quadratic $7{{x}^{2}}+3x-34=0$ with the general expression of quadratic i.e. $A{{x}^{2}}+Bx+C=0$
So, we get
A = 7, B = 3, C = - 34
Hence, roots of the quadratic of equation (iii) are given as
$\begin{align}
& x=\dfrac{-3\pm \sqrt{{{\left( 3 \right)}^{2}}-4\times 7\times -34}}{14} \\
& x=\dfrac{-3\pm \sqrt{9+952}}{14} \\
& x=\dfrac{-3\pm \sqrt{961}}{14} \\
\end{align}$
We know the value of $\sqrt{961}$ is given as 31. So, we get value of x as
$x=\dfrac{-3\pm 31}{14}$
So, we get the values of x by taking ‘+’ and ‘-‘ sign individually as
$\begin{align}
& x=\dfrac{-3+31}{14},\dfrac{-3-31}{14} \\
& x=\dfrac{28}{14},\dfrac{-34}{14} \\
& x=2,\dfrac{-17}{7} \\
\end{align}$
Hence, the integral value of x is given as x = 2.
So, the answer is 2.
Note: Another method to get the values of x from the quadratic $7{{x}^{2}}+3x-34=0$ would be factorization method, where we have to apply mid-term splitting, so that their product is equal to the product of the first and last term of the quadratic. So, we can write
$\begin{align}
& 7{{x}^{2}}+3x-34=0 \\
& 7{{x}^{2}}+17x-14x-34=0 \\
& x\left( 7x+17 \right)-2\left( 7x+17 \right)=0 \\
& \left( x-2 \right)\left( 7x+17 \right)=0 \\
& x=2,\dfrac{-17}{7} \\
\end{align}$
So, it can be another approach. One may go wrong with the values of A, B and C while comparing the quadratic $7{{x}^{2}}+3x-34=0$ with $A{{x}^{2}}+Bx+C=0$. So, take care with this step. Quadratic formula for $A{{x}^{2}}+Bx+C=0$ is given as
$x=\dfrac{-B\pm \sqrt{{{B}^{2}}-4AC}}{2A}$
And get the value of ‘x’ which is an integer.
{{x}_{1}} & {{y}_{1}} & {{z}_{1}} \\
{{x}_{2}} & {{y}_{2}} & {{z}_{2}} \\
{{x}_{3}} & {{y}_{3}} & {{z}_{3}} \\
\end{matrix} \right|$ is given along column 1 as
${{x}_{1}}\left( {{y}_{2}}{{z}_{3}}-{{z}_{3}}{{y}_{2}} \right)-{{x}_{2}}\left( {{y}_{1}}{{z}_{3}}-{{y}_{3}}{{z}_{1}} \right)+{{x}_{3}}\left( {{y}_{1}}{{z}_{2}}-{{y}_{2}}{{z}_{1}} \right)$
Complete step-by-step answer:
Use the above rule for expansion of the given determinant and use the quadratic formula to get roots of the formed quadratic equation.
Given expression in the problem is
$\left| \begin{matrix}
{{x}^{2}} & x & 1 \\
0 & 2 & 1 \\
3 & 1 & 4 \\
\end{matrix} \right|=28.............................\left( i \right)$
As we know the expansion of any determinant $\left| \begin{matrix}
{{x}_{1}} & {{y}_{1}} & {{z}_{1}} \\
{{x}_{2}} & {{y}_{2}} & {{z}_{2}} \\
{{x}_{3}} & {{y}_{3}} & {{z}_{3}} \\
\end{matrix} \right|$ is given along column 1 as
$={{x}_{1}}\left( {{y}_{2}}{{z}_{3}}-{{z}_{3}}{{y}_{2}} \right)-{{x}_{2}}\left( {{y}_{1}}{{z}_{3}}-{{y}_{3}}{{z}_{1}} \right)+{{x}_{3}}\left( {{y}_{1}}{{z}_{2}}-{{y}_{2}}{{z}_{1}} \right)..........................\left( ii \right)$
Hence, we can calculate the expansion of the given determinant in equation (i) along column 1 as
${{x}^{2}}\left( 2\times 4-1\times 1 \right)-0\left( x\times 4-1\times 1 \right)+3\left( x\times 1-2\times 1 \right)=28$
On simplifying the terms of the above equation as
$\begin{align}
& {{x}^{2}}\left( 8-1 \right)-0+3\left( x-2 \right)=28 \\
& 7{{x}^{2}}+3x-6=28 \\
& 7{{x}^{2}}+3x-34=0.............................\left( iii \right) \\
\end{align}$
As we know the roots of the quadratic $A{{x}^{2}}+Bx+C=0$ is given by the quadratic formula as
$x=\dfrac{-B\pm \sqrt{{{B}^{2}}-4AC}}{2A}...............................\left( iv \right)$
Now, we can compare the quadratic $7{{x}^{2}}+3x-34=0$ with the general expression of quadratic i.e. $A{{x}^{2}}+Bx+C=0$
So, we get
A = 7, B = 3, C = - 34
Hence, roots of the quadratic of equation (iii) are given as
$\begin{align}
& x=\dfrac{-3\pm \sqrt{{{\left( 3 \right)}^{2}}-4\times 7\times -34}}{14} \\
& x=\dfrac{-3\pm \sqrt{9+952}}{14} \\
& x=\dfrac{-3\pm \sqrt{961}}{14} \\
\end{align}$
We know the value of $\sqrt{961}$ is given as 31. So, we get value of x as
$x=\dfrac{-3\pm 31}{14}$
So, we get the values of x by taking ‘+’ and ‘-‘ sign individually as
$\begin{align}
& x=\dfrac{-3+31}{14},\dfrac{-3-31}{14} \\
& x=\dfrac{28}{14},\dfrac{-34}{14} \\
& x=2,\dfrac{-17}{7} \\
\end{align}$
Hence, the integral value of x is given as x = 2.
So, the answer is 2.
Note: Another method to get the values of x from the quadratic $7{{x}^{2}}+3x-34=0$ would be factorization method, where we have to apply mid-term splitting, so that their product is equal to the product of the first and last term of the quadratic. So, we can write
$\begin{align}
& 7{{x}^{2}}+3x-34=0 \\
& 7{{x}^{2}}+17x-14x-34=0 \\
& x\left( 7x+17 \right)-2\left( 7x+17 \right)=0 \\
& \left( x-2 \right)\left( 7x+17 \right)=0 \\
& x=2,\dfrac{-17}{7} \\
\end{align}$
So, it can be another approach. One may go wrong with the values of A, B and C while comparing the quadratic $7{{x}^{2}}+3x-34=0$ with $A{{x}^{2}}+Bx+C=0$. So, take care with this step. Quadratic formula for $A{{x}^{2}}+Bx+C=0$ is given as
$x=\dfrac{-B\pm \sqrt{{{B}^{2}}-4AC}}{2A}$
And get the value of ‘x’ which is an integer.
Recently Updated Pages
Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 Physics: Engaging Questions & Answers for Success

Master Class 12 English: Engaging Questions & Answers for Success

Master Class 12 Social Science: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 12 Business Studies: Engaging Questions & Answers for Success

Trending doubts
Which are the Top 10 Largest Countries of the World?

What are the major means of transport Explain each class 12 social science CBSE

Draw a labelled sketch of the human eye class 12 physics CBSE

Why cannot DNA pass through cell membranes class 12 biology CBSE

Differentiate between insitu conservation and exsitu class 12 biology CBSE

Draw a neat and well labeled diagram of TS of ovary class 12 biology CBSE

