
How do you find the integral of $ \int {{x^3}.\sqrt {9 - {x^2}} dx} $ ?
Answer
563.4k+ views
Hint: In order to determine the answer of above indefinite integral use the method of Integration by substitution by substituting $ 9 - {x^2} $ with $ {t^2} $ then evaluate the integral by converting to some known form and finally substitute the value of t in the final answer.
Complete step-by-step answer:
Given integral $ \int {{x^3}.\sqrt {9 - {x^2}} dx} $ -(1)
Here we are using Integration by substitution method to solve the above integral
Now, let’s assume $ 9 - {x^2} = {t^2} $ -(2)
Calculating the first derivative of the above assumed equation we get,
$
- 2xdx = 2tdt \\
\Leftrightarrow xdx = - tdt \;
$
From equation (1)
$ = \int {{x^2}.\sqrt {(9 - {x^2})} x.dx} $
Now replacing $ xdx = - tdt $ , $ {x^2} = 9 - {t^2} $ and $ 9 - {x^2} = {t^2} $
\[
= \int { - (9 - {t^2}){t^2}dt} \\
= \int {({t^4} - 9{t^2})dt} \;
\]
Now separating integral
\[ = \int {{t^4}dt} - 9\int {{t^2}dt} \]
Using integration rule $ \int {{x^n}dx = \dfrac{{{x^{n + 1}}}}{{n + 1}} + C} $
$ = \dfrac{{{t^5}}}{5} - 9\dfrac{{{t^3}}}{3} + C $ where C is a constant
$ = \dfrac{{{t^5}}}{5} - 3{t^3} + C $
Now putting back the value of $ t $ back from the line no (2) in above
$ = \dfrac{{{{(9 - {x^2})}^{\dfrac{5}{2}}}}}{5} - \dfrac{{{{(9 - {x^2})}^{\dfrac{3}{2}}}}}{5}+ C $ where C is the constant
Hence, Integral value of $ \int {{x^3}.\sqrt {9 - {x^2}} dx} $ is equal to $ \dfrac{{{{(9 - {x^2})}^{\dfrac{5}{2}}}}}{5} - \dfrac{{{{(9 - {x^2})}^{\dfrac{3}{2}}}}}{5}+ C $
So, the correct answer is “$ \dfrac{{{{(9 - {x^2})}^{\dfrac{5}{2}}}}}{5} - \dfrac{{{{(9 - {x^2})}^{\dfrac{3}{2}}}}}{5}+ C $ ”.
Note: 4. Indefinite integral=Let $f(x)$ be a function .Then the family of all its primitives (or antiderivatives) is called the indefinite integral of $f(x)$ and is denoted by $\int {f(x)} dx$
The symbol $\int {f(x)dx} $ is read as the indefinite integral of $f(x)$with respect to x.
Complete step-by-step answer:
Given integral $ \int {{x^3}.\sqrt {9 - {x^2}} dx} $ -(1)
Here we are using Integration by substitution method to solve the above integral
Now, let’s assume $ 9 - {x^2} = {t^2} $ -(2)
Calculating the first derivative of the above assumed equation we get,
$
- 2xdx = 2tdt \\
\Leftrightarrow xdx = - tdt \;
$
From equation (1)
$ = \int {{x^2}.\sqrt {(9 - {x^2})} x.dx} $
Now replacing $ xdx = - tdt $ , $ {x^2} = 9 - {t^2} $ and $ 9 - {x^2} = {t^2} $
\[
= \int { - (9 - {t^2}){t^2}dt} \\
= \int {({t^4} - 9{t^2})dt} \;
\]
Now separating integral
\[ = \int {{t^4}dt} - 9\int {{t^2}dt} \]
Using integration rule $ \int {{x^n}dx = \dfrac{{{x^{n + 1}}}}{{n + 1}} + C} $
$ = \dfrac{{{t^5}}}{5} - 9\dfrac{{{t^3}}}{3} + C $ where C is a constant
$ = \dfrac{{{t^5}}}{5} - 3{t^3} + C $
Now putting back the value of $ t $ back from the line no (2) in above
$ = \dfrac{{{{(9 - {x^2})}^{\dfrac{5}{2}}}}}{5} - \dfrac{{{{(9 - {x^2})}^{\dfrac{3}{2}}}}}{5}+ C $ where C is the constant
Hence, Integral value of $ \int {{x^3}.\sqrt {9 - {x^2}} dx} $ is equal to $ \dfrac{{{{(9 - {x^2})}^{\dfrac{5}{2}}}}}{5} - \dfrac{{{{(9 - {x^2})}^{\dfrac{3}{2}}}}}{5}+ C $
So, the correct answer is “$ \dfrac{{{{(9 - {x^2})}^{\dfrac{5}{2}}}}}{5} - \dfrac{{{{(9 - {x^2})}^{\dfrac{3}{2}}}}}{5}+ C $ ”.
Note: 4. Indefinite integral=Let $f(x)$ be a function .Then the family of all its primitives (or antiderivatives) is called the indefinite integral of $f(x)$ and is denoted by $\int {f(x)} dx$
The symbol $\int {f(x)dx} $ is read as the indefinite integral of $f(x)$with respect to x.
Recently Updated Pages
Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 Physics: Engaging Questions & Answers for Success

Master Class 12 English: Engaging Questions & Answers for Success

Master Class 12 Social Science: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 12 Business Studies: Engaging Questions & Answers for Success

Trending doubts
Which are the Top 10 Largest Countries of the World?

What are the major means of transport Explain each class 12 social science CBSE

Draw a labelled sketch of the human eye class 12 physics CBSE

Differentiate between insitu conservation and exsitu class 12 biology CBSE

Draw a neat and well labeled diagram of TS of ovary class 12 biology CBSE

Give 10 examples of unisexual and bisexual flowers

