
How do you find the indefinite integral of $ \sqrt{25+{{x}^{2}}} $ ?
Answer
561k+ views
Hint: We have to find the indefinite integral of $ \sqrt{25+{{x}^{2}}} $ . The given integral is in the form of $ \sqrt{{{a}^{2}}+{{x}^{2}}} $ where the indefinite integral gives us $ \int{\sqrt{{{a}^{2}}+{{x}^{2}}}dx}=\dfrac{x}{2}\sqrt{{{a}^{2}}+{{x}^{2}}}+\dfrac{{{a}^{2}}}{2}\log \left| x+\sqrt{{{a}^{2}}+{{x}^{2}}} \right|+c $ . We find the value of $ a $ from the relation of $ {{a}^{2}}=25 $ . Then we place the value of $ a $ in the integral to find the solution of the integral.
Complete step by step answer:
We need to find the indefinite integral of the given function $ \sqrt{25+{{x}^{2}}} $ .
It is of the form $ \sqrt{{{a}^{2}}+{{x}^{2}}} $ where $ a $ is a constant.
We know that the indefinite integral of the $ \sqrt{{{a}^{2}}+{{x}^{2}}} $ is
$ \int{\sqrt{{{a}^{2}}+{{x}^{2}}}dx}=\dfrac{x}{2}\sqrt{{{a}^{2}}+{{x}^{2}}}+\dfrac{{{a}^{2}}}{2}\log \left| x+\sqrt{{{a}^{2}}+{{x}^{2}}} \right|+c $ .
For our given case the value of $ a $ will be decided from the relation of $ {{a}^{2}}=25 $ .
We get the value of $ a $ as $ a=\sqrt{25}=5 $ .
We apply the value of $ a=5 $ in the integral form of $ \int{\sqrt{{{a}^{2}}+{{x}^{2}}}dx}=\dfrac{x}{2}\sqrt{{{a}^{2}}+{{x}^{2}}}+\dfrac{{{a}^{2}}}{2}\log \left| x+\sqrt{{{a}^{2}}+{{x}^{2}}} \right|+c $ to get
$ \int{\sqrt{25+{{x}^{2}}}dx}=\dfrac{x}{2}\sqrt{25+{{x}^{2}}}+\dfrac{25}{2}\log \left| x+\sqrt{25+{{x}^{2}}} \right|+c $ .
Therefore, the indefinite integral value of $ \sqrt{25+{{x}^{2}}} $ is $ \int{\sqrt{25+{{x}^{2}}}dx}=\dfrac{x}{2}\sqrt{25+{{x}^{2}}}+\dfrac{25}{2}\log \left| x+\sqrt{25+{{x}^{2}}} \right|+c $ .
Note:
The integral form $ \int{\sqrt{{{a}^{2}}+{{x}^{2}}}dx}=\dfrac{x}{2}\sqrt{{{a}^{2}}+{{x}^{2}}}+\dfrac{{{a}^{2}}}{2}\log \left| x+\sqrt{{{a}^{2}}+{{x}^{2}}} \right|+c $ is a derivation of the use of the by parts theorem. If the theorem is hard to remember then we solve the integral of $ \sqrt{25+{{x}^{2}}} $ by parts.
We take two function in the integral formula $ \int{uvdx}=u\int{vdx}-\int{\left( \dfrac{du}{dx}\int{vdx} \right)dx} $ where
$ u=1,v=\sqrt{25+{{x}^{2}}} $ .
We place the functions and get
$ \int{\left( 1\times \sqrt{25+{{x}^{2}}} \right)dx}=\sqrt{25+{{x}^{2}}}\int{dx}-\int{\left[ \dfrac{d}{dx}\left( \sqrt{25+{{x}^{2}}} \right)\int{dx} \right]dx} $ .
The differentiation of $ \sqrt{25+{{x}^{2}}} $ will be $ \dfrac{d}{dx}\left( \sqrt{25+{{x}^{2}}} \right)=\dfrac{2x}{2\sqrt{25+{{x}^{2}}}}=\dfrac{x}{\sqrt{25+{{x}^{2}}}} $ .
Therefore, $ I=\int{\sqrt{25+{{x}^{2}}}dx}=x\sqrt{25+{{x}^{2}}}-\int{\dfrac{{{x}^{2}}}{\sqrt{25+{{x}^{2}}}}dx} $ .
We can change the numerator $ \dfrac{{{x}^{2}}}{\sqrt{25+{{x}^{2}}}}=\dfrac{{{x}^{2}}+25-25}{\sqrt{25+{{x}^{2}}}}=\dfrac{{{x}^{2}}+25}{\sqrt{25+{{x}^{2}}}}-\dfrac{25}{\sqrt{25+{{x}^{2}}}} $ .
Integrating we get $ \int{\dfrac{{{x}^{2}}}{\sqrt{25+{{x}^{2}}}}dx}=\int{\dfrac{{{x}^{2}}+25}{\sqrt{25+{{x}^{2}}}}dx}-25\int{\dfrac{25}{\sqrt{25+{{x}^{2}}}}dx} $ .
We replace the integral value. It gives
$ \begin{align}
& \int{\dfrac{{{x}^{2}}}{\sqrt{25+{{x}^{2}}}}dx}=\int{\sqrt{25+{{x}^{2}}}dx}-25\int{\dfrac{25}{\sqrt{25+{{x}^{2}}}}dx} \\
& \Rightarrow \int{\dfrac{{{x}^{2}}}{\sqrt{25+{{x}^{2}}}}dx}=I-25\log \left| x+\sqrt{25+{{x}^{2}}} \right| \\
\end{align} $
We again replace the values and get
$ \begin{align}
& I=x\sqrt{25+{{x}^{2}}}-\int{\dfrac{{{x}^{2}}}{\sqrt{25+{{x}^{2}}}}dx} \\
& \Rightarrow I=x\sqrt{25+{{x}^{2}}}-\left[ I-25\log \left| x+\sqrt{25+{{x}^{2}}} \right| \right] \\
& \Rightarrow 2I=x\sqrt{25+{{x}^{2}}}+25\log \left| x+\sqrt{25+{{x}^{2}}} \right| \\
& \Rightarrow I=\dfrac{x}{2}\sqrt{25+{{x}^{2}}}+\dfrac{25}{2}\log \left| x+\sqrt{25+{{x}^{2}}} \right|+c \\
\end{align} $
Thus, verified the indefinite integral value of $ \sqrt{25+{{x}^{2}}} $ is $ \int{\sqrt{25+{{x}^{2}}}dx}=\dfrac{x}{2}\sqrt{25+{{x}^{2}}}+\dfrac{25}{2}\log \left| x+\sqrt{25+{{x}^{2}}} \right|+c $ .
Complete step by step answer:
We need to find the indefinite integral of the given function $ \sqrt{25+{{x}^{2}}} $ .
It is of the form $ \sqrt{{{a}^{2}}+{{x}^{2}}} $ where $ a $ is a constant.
We know that the indefinite integral of the $ \sqrt{{{a}^{2}}+{{x}^{2}}} $ is
$ \int{\sqrt{{{a}^{2}}+{{x}^{2}}}dx}=\dfrac{x}{2}\sqrt{{{a}^{2}}+{{x}^{2}}}+\dfrac{{{a}^{2}}}{2}\log \left| x+\sqrt{{{a}^{2}}+{{x}^{2}}} \right|+c $ .
For our given case the value of $ a $ will be decided from the relation of $ {{a}^{2}}=25 $ .
We get the value of $ a $ as $ a=\sqrt{25}=5 $ .
We apply the value of $ a=5 $ in the integral form of $ \int{\sqrt{{{a}^{2}}+{{x}^{2}}}dx}=\dfrac{x}{2}\sqrt{{{a}^{2}}+{{x}^{2}}}+\dfrac{{{a}^{2}}}{2}\log \left| x+\sqrt{{{a}^{2}}+{{x}^{2}}} \right|+c $ to get
$ \int{\sqrt{25+{{x}^{2}}}dx}=\dfrac{x}{2}\sqrt{25+{{x}^{2}}}+\dfrac{25}{2}\log \left| x+\sqrt{25+{{x}^{2}}} \right|+c $ .
Therefore, the indefinite integral value of $ \sqrt{25+{{x}^{2}}} $ is $ \int{\sqrt{25+{{x}^{2}}}dx}=\dfrac{x}{2}\sqrt{25+{{x}^{2}}}+\dfrac{25}{2}\log \left| x+\sqrt{25+{{x}^{2}}} \right|+c $ .
Note:
The integral form $ \int{\sqrt{{{a}^{2}}+{{x}^{2}}}dx}=\dfrac{x}{2}\sqrt{{{a}^{2}}+{{x}^{2}}}+\dfrac{{{a}^{2}}}{2}\log \left| x+\sqrt{{{a}^{2}}+{{x}^{2}}} \right|+c $ is a derivation of the use of the by parts theorem. If the theorem is hard to remember then we solve the integral of $ \sqrt{25+{{x}^{2}}} $ by parts.
We take two function in the integral formula $ \int{uvdx}=u\int{vdx}-\int{\left( \dfrac{du}{dx}\int{vdx} \right)dx} $ where
$ u=1,v=\sqrt{25+{{x}^{2}}} $ .
We place the functions and get
$ \int{\left( 1\times \sqrt{25+{{x}^{2}}} \right)dx}=\sqrt{25+{{x}^{2}}}\int{dx}-\int{\left[ \dfrac{d}{dx}\left( \sqrt{25+{{x}^{2}}} \right)\int{dx} \right]dx} $ .
The differentiation of $ \sqrt{25+{{x}^{2}}} $ will be $ \dfrac{d}{dx}\left( \sqrt{25+{{x}^{2}}} \right)=\dfrac{2x}{2\sqrt{25+{{x}^{2}}}}=\dfrac{x}{\sqrt{25+{{x}^{2}}}} $ .
Therefore, $ I=\int{\sqrt{25+{{x}^{2}}}dx}=x\sqrt{25+{{x}^{2}}}-\int{\dfrac{{{x}^{2}}}{\sqrt{25+{{x}^{2}}}}dx} $ .
We can change the numerator $ \dfrac{{{x}^{2}}}{\sqrt{25+{{x}^{2}}}}=\dfrac{{{x}^{2}}+25-25}{\sqrt{25+{{x}^{2}}}}=\dfrac{{{x}^{2}}+25}{\sqrt{25+{{x}^{2}}}}-\dfrac{25}{\sqrt{25+{{x}^{2}}}} $ .
Integrating we get $ \int{\dfrac{{{x}^{2}}}{\sqrt{25+{{x}^{2}}}}dx}=\int{\dfrac{{{x}^{2}}+25}{\sqrt{25+{{x}^{2}}}}dx}-25\int{\dfrac{25}{\sqrt{25+{{x}^{2}}}}dx} $ .
We replace the integral value. It gives
$ \begin{align}
& \int{\dfrac{{{x}^{2}}}{\sqrt{25+{{x}^{2}}}}dx}=\int{\sqrt{25+{{x}^{2}}}dx}-25\int{\dfrac{25}{\sqrt{25+{{x}^{2}}}}dx} \\
& \Rightarrow \int{\dfrac{{{x}^{2}}}{\sqrt{25+{{x}^{2}}}}dx}=I-25\log \left| x+\sqrt{25+{{x}^{2}}} \right| \\
\end{align} $
We again replace the values and get
$ \begin{align}
& I=x\sqrt{25+{{x}^{2}}}-\int{\dfrac{{{x}^{2}}}{\sqrt{25+{{x}^{2}}}}dx} \\
& \Rightarrow I=x\sqrt{25+{{x}^{2}}}-\left[ I-25\log \left| x+\sqrt{25+{{x}^{2}}} \right| \right] \\
& \Rightarrow 2I=x\sqrt{25+{{x}^{2}}}+25\log \left| x+\sqrt{25+{{x}^{2}}} \right| \\
& \Rightarrow I=\dfrac{x}{2}\sqrt{25+{{x}^{2}}}+\dfrac{25}{2}\log \left| x+\sqrt{25+{{x}^{2}}} \right|+c \\
\end{align} $
Thus, verified the indefinite integral value of $ \sqrt{25+{{x}^{2}}} $ is $ \int{\sqrt{25+{{x}^{2}}}dx}=\dfrac{x}{2}\sqrt{25+{{x}^{2}}}+\dfrac{25}{2}\log \left| x+\sqrt{25+{{x}^{2}}} \right|+c $ .
Recently Updated Pages
Master Class 10 Computer Science: Engaging Questions & Answers for Success

Master Class 10 General Knowledge: Engaging Questions & Answers for Success

Master Class 10 English: Engaging Questions & Answers for Success

Master Class 10 Social Science: Engaging Questions & Answers for Success

Master Class 10 Maths: Engaging Questions & Answers for Success

Master Class 10 Science: Engaging Questions & Answers for Success

Trending doubts
What is the median of the first 10 natural numbers class 10 maths CBSE

Which women's tennis player has 24 Grand Slam singles titles?

Who is the Brand Ambassador of Incredible India?

Why is there a time difference of about 5 hours between class 10 social science CBSE

Write a letter to the principal requesting him to grant class 10 english CBSE

State and prove converse of BPT Basic Proportionality class 10 maths CBSE

