
Find the incentre of the triangle with vertices \[\left( {7,1} \right),\left( { - 1,5} \right)\]and \[\left( {3{\text{ }} + {\text{ }}2\sqrt 3 ,{\text{ }}3{\text{ }} + {\text{ }}4\sqrt 3 } \right)\]
1) \[\left( {3 + \dfrac{2}{{\sqrt 3 }},3 + \dfrac{4}{{\sqrt 3 }}} \right)\]
2) \[\left( {1 + \dfrac{2}{{3\sqrt 3 }},1 + \dfrac{4}{{3\sqrt 3 }}} \right)\]
3) (7, 1)
4) None of these
Answer
441k+ views
Hint: Using the vertices first find out the length of the sides of the triangle and proceed. Then we have to determine the type of the triangle by observing the sides of the triangle. Now using the incentre formula for that particular type of triangle the coordinates are found.
Complete step-by-step answer:
Lest us consider the three vertices to be \[A\left( {7,1} \right),B\left( { - 1,5} \right)\], \[C\left( {3{\text{ }} + {\text{ }}2\sqrt 3 ,{\text{ }}3{\text{ }} + {\text{ }}4\sqrt 3 } \right)\] which forms the triangle \[\Delta ABC\] .
So, to find the length of the sides of the triangle distance formula is used and solve it
\[d = \sqrt {{{\left( {{x_2} - {x_1}} \right)}^2} - {{\left( {{y_2} - {y_1}} \right)}^2}} \]
So, the length of the side AB we get,
\[ \Rightarrow AB = \sqrt {{{\left( {\left( { - 1} \right) - 7} \right)}^2} - {{\left( {5 - 1} \right)}^2}} \]
\[ \Rightarrow AB = \sqrt {{8^2} + {4^2}} \]
\[ \Rightarrow AB = \sqrt {80} \]
\[ \Rightarrow AB = 4\sqrt 5 \]
Now, the length of the side BC we get,
\[ \Rightarrow BC = \sqrt {{{\left( {\left( {3 + 2\sqrt 3 } \right) - \left( { - 1} \right)} \right)}^2} - {{\left( {\left( {3 + 4\sqrt 3 } \right) - 5} \right)}^2}} \]
\[ \Rightarrow Bc = 4\sqrt 5 \]
Now, the length of the side CA we get,
\[ \Rightarrow CA = \sqrt {{{\left( {\left( {3 + 2\sqrt 3 } \right) - 7} \right)}^2} - {{\left( {\left( {3 + 4\sqrt 3 } \right) - 5} \right)}^2}} \]
\[ \Rightarrow CA = 4\sqrt 5 \]
Since AB = BC = CA = \[4\sqrt 5 \]
Hence, we can say that it is an equilateral triangle. Since \[\Delta ABC\] is an equilateral triangle. The incentre is nothing but equal to the centroid of \[\Delta ABC\] .
So, the coordinates of the incentre = coordinates of centroid
Now, coordinates of centroid can be written using the formula
\[ \Rightarrow \left( {\dfrac{{{x_1} + {x_2} + {x_3}}}{3},\dfrac{{{y_1} + {y_2} + {y_3}}}{3}} \right)\]
\[ \Rightarrow \left( {\dfrac{{7 + \left( { - 1} \right) + \left( {3 + 2\sqrt 3 } \right)}}{3},\dfrac{{1 + 5 + \left( {3 + 4\sqrt 3 } \right)}}{3}} \right)\]
\[ \Rightarrow \left( {\dfrac{{9 + 2\sqrt 3 }}{3},\dfrac{{9 + 4\sqrt 3 }}{3}} \right)\]
\[ \Rightarrow \left( {3 + \dfrac{2}{{\sqrt 3 }},3 + \dfrac{4}{{\sqrt 3 }}} \right)\]
Thus, coordinates of incentre are: \[ \Rightarrow \left( {3 + \dfrac{2}{{\sqrt 3 }},3 + \dfrac{4}{{\sqrt 3 }}} \right)\]
Hence option (1) is the correct answer to this question.
So, the correct answer is “Option 1”.
Note: When we have to solve this type question, first calculate the distance of the side of the triangle and apply the formula of incentre with respect to the triangle that formed. Alternate way to find the incentre is using the formula-
\[\left( {\dfrac{{a{x_1} + b{x_2} + c{x_3}}}{{a + b + c}},\dfrac{{a{y_1} + b{y_2} + c{y_3}}}{{a + b + c}}} \right)\]
Where,
Length of side AB is a
Length of side BC is b
Length of side CA is c
Complete step-by-step answer:
Lest us consider the three vertices to be \[A\left( {7,1} \right),B\left( { - 1,5} \right)\], \[C\left( {3{\text{ }} + {\text{ }}2\sqrt 3 ,{\text{ }}3{\text{ }} + {\text{ }}4\sqrt 3 } \right)\] which forms the triangle \[\Delta ABC\] .
So, to find the length of the sides of the triangle distance formula is used and solve it
\[d = \sqrt {{{\left( {{x_2} - {x_1}} \right)}^2} - {{\left( {{y_2} - {y_1}} \right)}^2}} \]
So, the length of the side AB we get,
\[ \Rightarrow AB = \sqrt {{{\left( {\left( { - 1} \right) - 7} \right)}^2} - {{\left( {5 - 1} \right)}^2}} \]
\[ \Rightarrow AB = \sqrt {{8^2} + {4^2}} \]
\[ \Rightarrow AB = \sqrt {80} \]
\[ \Rightarrow AB = 4\sqrt 5 \]
Now, the length of the side BC we get,
\[ \Rightarrow BC = \sqrt {{{\left( {\left( {3 + 2\sqrt 3 } \right) - \left( { - 1} \right)} \right)}^2} - {{\left( {\left( {3 + 4\sqrt 3 } \right) - 5} \right)}^2}} \]
\[ \Rightarrow Bc = 4\sqrt 5 \]
Now, the length of the side CA we get,
\[ \Rightarrow CA = \sqrt {{{\left( {\left( {3 + 2\sqrt 3 } \right) - 7} \right)}^2} - {{\left( {\left( {3 + 4\sqrt 3 } \right) - 5} \right)}^2}} \]
\[ \Rightarrow CA = 4\sqrt 5 \]

Since AB = BC = CA = \[4\sqrt 5 \]
Hence, we can say that it is an equilateral triangle. Since \[\Delta ABC\] is an equilateral triangle. The incentre is nothing but equal to the centroid of \[\Delta ABC\] .
So, the coordinates of the incentre = coordinates of centroid
Now, coordinates of centroid can be written using the formula
\[ \Rightarrow \left( {\dfrac{{{x_1} + {x_2} + {x_3}}}{3},\dfrac{{{y_1} + {y_2} + {y_3}}}{3}} \right)\]
\[ \Rightarrow \left( {\dfrac{{7 + \left( { - 1} \right) + \left( {3 + 2\sqrt 3 } \right)}}{3},\dfrac{{1 + 5 + \left( {3 + 4\sqrt 3 } \right)}}{3}} \right)\]
\[ \Rightarrow \left( {\dfrac{{9 + 2\sqrt 3 }}{3},\dfrac{{9 + 4\sqrt 3 }}{3}} \right)\]
\[ \Rightarrow \left( {3 + \dfrac{2}{{\sqrt 3 }},3 + \dfrac{4}{{\sqrt 3 }}} \right)\]
Thus, coordinates of incentre are: \[ \Rightarrow \left( {3 + \dfrac{2}{{\sqrt 3 }},3 + \dfrac{4}{{\sqrt 3 }}} \right)\]
Hence option (1) is the correct answer to this question.
So, the correct answer is “Option 1”.
Note: When we have to solve this type question, first calculate the distance of the side of the triangle and apply the formula of incentre with respect to the triangle that formed. Alternate way to find the incentre is using the formula-
\[\left( {\dfrac{{a{x_1} + b{x_2} + c{x_3}}}{{a + b + c}},\dfrac{{a{y_1} + b{y_2} + c{y_3}}}{{a + b + c}}} \right)\]
Where,
Length of side AB is a
Length of side BC is b
Length of side CA is c
Recently Updated Pages
Master Class 11 Economics: Engaging Questions & Answers for Success

Master Class 11 Accountancy: Engaging Questions & Answers for Success

Master Class 11 English: Engaging Questions & Answers for Success

Master Class 11 Social Science: Engaging Questions & Answers for Success

Master Class 11 Biology: Engaging Questions & Answers for Success

Master Class 11 Physics: Engaging Questions & Answers for Success

Trending doubts
1 ton equals to A 100 kg B 1000 kg C 10 kg D 10000 class 11 physics CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

1 Quintal is equal to a 110 kg b 10 kg c 100kg d 1000 class 11 physics CBSE

Draw a diagram of nephron and explain its structur class 11 biology CBSE

Explain zero factorial class 11 maths CBSE
