
Find the image of the point $(2,1)$ with respect to the line mirror $x + y - 5 = 0$
Answer
510.3k+ views
Hint: Firstly, we will suppose the image of the given number. Then, calculate the slope of the image. Further we will find the midpoint of the given line to get the result.
Complete step by step solution:
Let the image of $A(1,2)\,\,be\,\,B(a,b)$.Let $C$ be the midpoint of $AB$.
The midpoint formula $\left( {\dfrac{{{x_1} + {x_2}}}{2},\dfrac{{{y_1} + {y_2}}}{2}} \right)$
Then coordinates of $M$ are $\left[ {\dfrac{{2 + a}}{2},\dfrac{{1 + b}}{2}} \right]$
Point $C$ lies on the line $x + y - 5 = 0$ $....(1)$
Now, we put the values of $x$ and $y$ in equation (1), we have,
$\dfrac{{2 + a}}{2} + \dfrac{{1 + b}}{2} - 5 = 0$
$ \Rightarrow \dfrac{{2 + a + 1 + b - 10}}{2} = 0$
\[ \Rightarrow 3 + a + b - 10 = 0 \times 2\]
$ \Rightarrow a + b - 7 = 0$
$ \Rightarrow a + b = 0 + 7$
$ \Rightarrow a + b = 7$ ……(ii)
Then, the lines $x + y - 5 = 0$ and $AB$ are perpendicular then, the product of their slope is$ - 1$.
The points are $A(2,1)\,and\,\,B(a,b)$, then
The slope of $AB = \dfrac{{b - 1}}{{a - 2}}$
And the line $x + y - 5 = 0$
$x + y = 0 + 5$
$y = 5 - x$
$y = x + 5$
Thus, slope of line$({m_2}) = - 1$
${m_1} \times {m_2} = - 1$
Putting the values of slopes, we will get,
$\dfrac{{b - 1}}{{a - 2}} \times - 1$
$ = - 1$
$ - \dfrac{{(b - 1)}}{{a - 2}} = \dfrac{{ - 1}}{1}$
Now, by cross multiplying the values , we have
$b - 1 = a - 2$
$ \Rightarrow - 1 + 2 = a - b$
$ \Rightarrow 1 = a - b$
$ \Rightarrow a - b = 1$ …..(3)
Adding equation (2) and (3), we will get
$a + b + a = 7 + 1$
$2a = 8$
$a = \dfrac{8}{4}$
$a = 4$
Now, from equation (3)
$a - b = 1$
$4 - b = 1$
$ \Rightarrow 4 - 1 = b$
$ \Rightarrow 3 = b$
$ \Rightarrow b = 3$
Hence, the image of point $(2,1)$ with respect to the line mirror $x + y - 5 = 0 $is$ (4,3)$.
Note: Students should substitute the exact value of \[{x_1},{x_2},{y_1} and {y_2}\] in the midpoint formula in accordance to the values given in the question
Complete step by step solution:
Let the image of $A(1,2)\,\,be\,\,B(a,b)$.Let $C$ be the midpoint of $AB$.
The midpoint formula $\left( {\dfrac{{{x_1} + {x_2}}}{2},\dfrac{{{y_1} + {y_2}}}{2}} \right)$
Then coordinates of $M$ are $\left[ {\dfrac{{2 + a}}{2},\dfrac{{1 + b}}{2}} \right]$

Point $C$ lies on the line $x + y - 5 = 0$ $....(1)$
Now, we put the values of $x$ and $y$ in equation (1), we have,
$\dfrac{{2 + a}}{2} + \dfrac{{1 + b}}{2} - 5 = 0$
$ \Rightarrow \dfrac{{2 + a + 1 + b - 10}}{2} = 0$
\[ \Rightarrow 3 + a + b - 10 = 0 \times 2\]
$ \Rightarrow a + b - 7 = 0$
$ \Rightarrow a + b = 0 + 7$
$ \Rightarrow a + b = 7$ ……(ii)
Then, the lines $x + y - 5 = 0$ and $AB$ are perpendicular then, the product of their slope is$ - 1$.
The points are $A(2,1)\,and\,\,B(a,b)$, then
The slope of $AB = \dfrac{{b - 1}}{{a - 2}}$
And the line $x + y - 5 = 0$
$x + y = 0 + 5$
$y = 5 - x$
$y = x + 5$
Thus, slope of line$({m_2}) = - 1$
${m_1} \times {m_2} = - 1$
Putting the values of slopes, we will get,
$\dfrac{{b - 1}}{{a - 2}} \times - 1$
$ = - 1$
$ - \dfrac{{(b - 1)}}{{a - 2}} = \dfrac{{ - 1}}{1}$
Now, by cross multiplying the values , we have
$b - 1 = a - 2$
$ \Rightarrow - 1 + 2 = a - b$
$ \Rightarrow 1 = a - b$
$ \Rightarrow a - b = 1$ …..(3)
Adding equation (2) and (3), we will get
$a + b + a = 7 + 1$
$2a = 8$
$a = \dfrac{8}{4}$
$a = 4$
Now, from equation (3)
$a - b = 1$
$4 - b = 1$
$ \Rightarrow 4 - 1 = b$
$ \Rightarrow 3 = b$
$ \Rightarrow b = 3$
Hence, the image of point $(2,1)$ with respect to the line mirror $x + y - 5 = 0 $is$ (4,3)$.
Note: Students should substitute the exact value of \[{x_1},{x_2},{y_1} and {y_2}\] in the midpoint formula in accordance to the values given in the question
Recently Updated Pages
Master Class 12 Business Studies: Engaging Questions & Answers for Success

Master Class 12 English: Engaging Questions & Answers for Success

Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 Social Science: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 12 Chemistry: Engaging Questions & Answers for Success

Trending doubts
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths

Gautam Buddha was born in the year A581 BC B563 BC class 10 social science CBSE

Fill the blanks with proper collective nouns 1 A of class 10 english CBSE

Why is there a time difference of about 5 hours between class 10 social science CBSE

What is the median of the first 10 natural numbers class 10 maths CBSE

Change the following sentences into negative and interrogative class 10 english CBSE
