
Find the image of the point $(2,1)$ with respect to the line mirror $x + y - 5 = 0$
Answer
589.5k+ views
Hint: Firstly, we will suppose the image of the given number. Then, calculate the slope of the image. Further we will find the midpoint of the given line to get the result.
Complete step by step solution:
Let the image of $A(1,2)\,\,be\,\,B(a,b)$.Let $C$ be the midpoint of $AB$.
The midpoint formula $\left( {\dfrac{{{x_1} + {x_2}}}{2},\dfrac{{{y_1} + {y_2}}}{2}} \right)$
Then coordinates of $M$ are $\left[ {\dfrac{{2 + a}}{2},\dfrac{{1 + b}}{2}} \right]$
Point $C$ lies on the line $x + y - 5 = 0$ $....(1)$
Now, we put the values of $x$ and $y$ in equation (1), we have,
$\dfrac{{2 + a}}{2} + \dfrac{{1 + b}}{2} - 5 = 0$
$ \Rightarrow \dfrac{{2 + a + 1 + b - 10}}{2} = 0$
\[ \Rightarrow 3 + a + b - 10 = 0 \times 2\]
$ \Rightarrow a + b - 7 = 0$
$ \Rightarrow a + b = 0 + 7$
$ \Rightarrow a + b = 7$ ……(ii)
Then, the lines $x + y - 5 = 0$ and $AB$ are perpendicular then, the product of their slope is$ - 1$.
The points are $A(2,1)\,and\,\,B(a,b)$, then
The slope of $AB = \dfrac{{b - 1}}{{a - 2}}$
And the line $x + y - 5 = 0$
$x + y = 0 + 5$
$y = 5 - x$
$y = x + 5$
Thus, slope of line$({m_2}) = - 1$
${m_1} \times {m_2} = - 1$
Putting the values of slopes, we will get,
$\dfrac{{b - 1}}{{a - 2}} \times - 1$
$ = - 1$
$ - \dfrac{{(b - 1)}}{{a - 2}} = \dfrac{{ - 1}}{1}$
Now, by cross multiplying the values , we have
$b - 1 = a - 2$
$ \Rightarrow - 1 + 2 = a - b$
$ \Rightarrow 1 = a - b$
$ \Rightarrow a - b = 1$ …..(3)
Adding equation (2) and (3), we will get
$a + b + a = 7 + 1$
$2a = 8$
$a = \dfrac{8}{4}$
$a = 4$
Now, from equation (3)
$a - b = 1$
$4 - b = 1$
$ \Rightarrow 4 - 1 = b$
$ \Rightarrow 3 = b$
$ \Rightarrow b = 3$
Hence, the image of point $(2,1)$ with respect to the line mirror $x + y - 5 = 0 $is$ (4,3)$.
Note: Students should substitute the exact value of \[{x_1},{x_2},{y_1} and {y_2}\] in the midpoint formula in accordance to the values given in the question
Complete step by step solution:
Let the image of $A(1,2)\,\,be\,\,B(a,b)$.Let $C$ be the midpoint of $AB$.
The midpoint formula $\left( {\dfrac{{{x_1} + {x_2}}}{2},\dfrac{{{y_1} + {y_2}}}{2}} \right)$
Then coordinates of $M$ are $\left[ {\dfrac{{2 + a}}{2},\dfrac{{1 + b}}{2}} \right]$
Point $C$ lies on the line $x + y - 5 = 0$ $....(1)$
Now, we put the values of $x$ and $y$ in equation (1), we have,
$\dfrac{{2 + a}}{2} + \dfrac{{1 + b}}{2} - 5 = 0$
$ \Rightarrow \dfrac{{2 + a + 1 + b - 10}}{2} = 0$
\[ \Rightarrow 3 + a + b - 10 = 0 \times 2\]
$ \Rightarrow a + b - 7 = 0$
$ \Rightarrow a + b = 0 + 7$
$ \Rightarrow a + b = 7$ ……(ii)
Then, the lines $x + y - 5 = 0$ and $AB$ are perpendicular then, the product of their slope is$ - 1$.
The points are $A(2,1)\,and\,\,B(a,b)$, then
The slope of $AB = \dfrac{{b - 1}}{{a - 2}}$
And the line $x + y - 5 = 0$
$x + y = 0 + 5$
$y = 5 - x$
$y = x + 5$
Thus, slope of line$({m_2}) = - 1$
${m_1} \times {m_2} = - 1$
Putting the values of slopes, we will get,
$\dfrac{{b - 1}}{{a - 2}} \times - 1$
$ = - 1$
$ - \dfrac{{(b - 1)}}{{a - 2}} = \dfrac{{ - 1}}{1}$
Now, by cross multiplying the values , we have
$b - 1 = a - 2$
$ \Rightarrow - 1 + 2 = a - b$
$ \Rightarrow 1 = a - b$
$ \Rightarrow a - b = 1$ …..(3)
Adding equation (2) and (3), we will get
$a + b + a = 7 + 1$
$2a = 8$
$a = \dfrac{8}{4}$
$a = 4$
Now, from equation (3)
$a - b = 1$
$4 - b = 1$
$ \Rightarrow 4 - 1 = b$
$ \Rightarrow 3 = b$
$ \Rightarrow b = 3$
Hence, the image of point $(2,1)$ with respect to the line mirror $x + y - 5 = 0 $is$ (4,3)$.
Note: Students should substitute the exact value of \[{x_1},{x_2},{y_1} and {y_2}\] in the midpoint formula in accordance to the values given in the question
Recently Updated Pages
Master Class 10 Computer Science: Engaging Questions & Answers for Success

Master Class 10 General Knowledge: Engaging Questions & Answers for Success

Master Class 10 English: Engaging Questions & Answers for Success

Master Class 10 Social Science: Engaging Questions & Answers for Success

Master Class 10 Maths: Engaging Questions & Answers for Success

Master Class 10 Science: Engaging Questions & Answers for Success

Trending doubts
What is the median of the first 10 natural numbers class 10 maths CBSE

Which women's tennis player has 24 Grand Slam singles titles?

Who is the Brand Ambassador of Incredible India?

Why is there a time difference of about 5 hours between class 10 social science CBSE

Write a letter to the principal requesting him to grant class 10 english CBSE

State and prove converse of BPT Basic Proportionality class 10 maths CBSE

