
Find the identity element for the binary operation on set $Q$ of rational numbers defined as follows:
(i)$a * b = {a^2} + {b^2}$
(ii) $a * b = {(a - b)^2}$
(iii) $a * b = a{b^2}$
Answer
590.4k+ views
Hint: Let$e$be the identity element. In each case compute $a * e$ and check the existence of $e$ such that $a * e = a = e * a$ for every $a \in Q$. If the relation holds, then find the value of $e$.
Complete step by step solution:
We are given three binary operations defined on the set $Q$ of rational numbers.
We need to find the identity element in each case.
Let $e$ denote the identity element which is also a rational number.
Let’s recall the definition of an identity element.
For any element $x$ belong to a set with binary operation $ * $, if $e$ denotes the identity element, then we have $x * e = x = e * x$.
(i) Consider the binary operation $a * b = {a^2} + {b^2}$.
Let’s compute $a * e$.
$a * e = {a^2} + {e^2}$
Now, we know that $ + $is a binary operation on $Q$ and $a$ is an element of $Q$. This implies that ${a^2} \in Q$.
But what we need is $a * e = a = e * a$ for every $a \in Q$.
That is we need ${a^2} + {e^2} = a$ for every $a$.
This is not possible.
Therefore, there does not exist an identity element for the binary operation $a * b = {a^2} + {b^2}$.
(ii) Consider $a * b = {(a - b)^2}$
Therefore, we get $a * e = {(a - e)^2} = {a^2} - 2ae + {e^2}$.
We need $a * e = a = e * a$for every$ a \in Q$.
That is we need ${a^2} - 2ae + {e^2} = a$ for every $a$ which is not possible.
Therefore, there does not exist an identity element for the binary operation $a * b = {(a - b)^2}$.
(iii) Consider $a * b = a{b^2}$
We need $a * e = a = e * a$ for every $a \in Q$.
Therefore, we get $a * e = a{e^2}$ and $e * a = e{a^2}$ for every $a \in Q$.
Now, $a{e^2} = e{a^2} \Leftrightarrow a{e^2} - e{a^2} = 0 \Leftrightarrow ae(e - 1) = 0$
Here $a,e,1,0$ are rational numbers.
Therefore, we have $a{e^2} = e{a^2} \Leftrightarrow e(e - 1) = 0$.
Now, this is possible only if $e = 0$ or $e = 1$.
Hence the identity element for the binary operation $a * b = a{b^2}$ is $e = 0$ or $e = 1$.
Note: For the set of rational numbers, 0 is the identity element with respect to the binary operation of addition and 1 is the identity element with respect to the binary operation of multiplication.
Complete step by step solution:
We are given three binary operations defined on the set $Q$ of rational numbers.
We need to find the identity element in each case.
Let $e$ denote the identity element which is also a rational number.
Let’s recall the definition of an identity element.
For any element $x$ belong to a set with binary operation $ * $, if $e$ denotes the identity element, then we have $x * e = x = e * x$.
(i) Consider the binary operation $a * b = {a^2} + {b^2}$.
Let’s compute $a * e$.
$a * e = {a^2} + {e^2}$
Now, we know that $ + $is a binary operation on $Q$ and $a$ is an element of $Q$. This implies that ${a^2} \in Q$.
But what we need is $a * e = a = e * a$ for every $a \in Q$.
That is we need ${a^2} + {e^2} = a$ for every $a$.
This is not possible.
Therefore, there does not exist an identity element for the binary operation $a * b = {a^2} + {b^2}$.
(ii) Consider $a * b = {(a - b)^2}$
Therefore, we get $a * e = {(a - e)^2} = {a^2} - 2ae + {e^2}$.
We need $a * e = a = e * a$for every$ a \in Q$.
That is we need ${a^2} - 2ae + {e^2} = a$ for every $a$ which is not possible.
Therefore, there does not exist an identity element for the binary operation $a * b = {(a - b)^2}$.
(iii) Consider $a * b = a{b^2}$
We need $a * e = a = e * a$ for every $a \in Q$.
Therefore, we get $a * e = a{e^2}$ and $e * a = e{a^2}$ for every $a \in Q$.
Now, $a{e^2} = e{a^2} \Leftrightarrow a{e^2} - e{a^2} = 0 \Leftrightarrow ae(e - 1) = 0$
Here $a,e,1,0$ are rational numbers.
Therefore, we have $a{e^2} = e{a^2} \Leftrightarrow e(e - 1) = 0$.
Now, this is possible only if $e = 0$ or $e = 1$.
Hence the identity element for the binary operation $a * b = a{b^2}$ is $e = 0$ or $e = 1$.
Note: For the set of rational numbers, 0 is the identity element with respect to the binary operation of addition and 1 is the identity element with respect to the binary operation of multiplication.
Recently Updated Pages
Master Class 10 Computer Science: Engaging Questions & Answers for Success

Master Class 10 General Knowledge: Engaging Questions & Answers for Success

Master Class 10 English: Engaging Questions & Answers for Success

Master Class 10 Social Science: Engaging Questions & Answers for Success

Master Class 10 Maths: Engaging Questions & Answers for Success

Master Class 10 Science: Engaging Questions & Answers for Success

Trending doubts
What is the median of the first 10 natural numbers class 10 maths CBSE

Which women's tennis player has 24 Grand Slam singles titles?

Who is the Brand Ambassador of Incredible India?

Why is there a time difference of about 5 hours between class 10 social science CBSE

Write a letter to the principal requesting him to grant class 10 english CBSE

State and prove converse of BPT Basic Proportionality class 10 maths CBSE

