
Find the greatest value of $f\left( x \right)=\cos \left( x{{e}^{\left[ x \right]}}+7{{x}^{2}}-3x \right)$, $x\in [-1,\infty )$
A. -1
B. 1
C. 0
D. none of these
Answer
554.7k+ views
Hint: We first try to define the domain of the given trigonometric function. Then we state the range of the function for any values of t, $\cos t\in \left[ -1,1 \right]$. We also try to get one continuous domain of $2\pi $ distance. At the end we find one-point x for which it attains the maximum value.
Complete step by step answer:
The main function of the given $f\left( x \right)=\cos \left( x{{e}^{\left[ x \right]}}+7{{x}^{2}}-3x \right)$ is $\cos $ function.
Now in a span of $2\pi $, it will take values of $\left[ -1,1 \right]$. Also, for any values of t, $\cos t\in \left[ -1,1 \right]$.
We just have to check that we can get a continuous domain of $2\pi $ distance.
Now we find a range of $x{{e}^{\left[ x \right]}}+7{{x}^{2}}-3x$. Here $\left[ x \right]$ is the greatest integer function which means the output is the greatest integer possible less than x.
As $x\in [-1,\infty )$, we can say $\left[ x \right]\in [-1,\infty )$ with only integer values.
We also know for any value of x; the exponential function always gets only positive value.
So, $x\in [-1,\infty )$, we can say ${{e}^{\left[ x \right]}}\in [\dfrac{1}{e},\infty )$.
So, we can see the function attains at least one continuous domain of $2\pi $ distance as it goes towards infinity.
So, we can say the greatest value of $f\left( x \right)=\cos \left( x{{e}^{\left[ x \right]}}+7{{x}^{2}}-3x \right)$ is 1.
We can also prove it by just showing 1 value of x for which $f\left( x \right)=\cos \left( x{{e}^{\left[ x \right]}}+7{{x}^{2}}-3x \right)=1$.
Let’s take $x=0$.
We find the value of $x{{e}^{\left[ x \right]}}+7{{x}^{2}}-3x$. So, $x{{e}^{\left[ x \right]}}+7{{x}^{2}}-3x=0$.
So, at $x=0$, $\cos 0=1$. We already got a point.
So, the correct answer is “Option B”.
Note: We need to always shoe at least one point which attains the maximum point. As the part $x{{e}^{\left[ x \right]}}$ can have some fixed points due to the factor that ${{e}^{\left[ x \right]}}$ attains only integer value. We have to show that at least one point of x satisfies the equation.
Complete step by step answer:
The main function of the given $f\left( x \right)=\cos \left( x{{e}^{\left[ x \right]}}+7{{x}^{2}}-3x \right)$ is $\cos $ function.
Now in a span of $2\pi $, it will take values of $\left[ -1,1 \right]$. Also, for any values of t, $\cos t\in \left[ -1,1 \right]$.
We just have to check that we can get a continuous domain of $2\pi $ distance.
Now we find a range of $x{{e}^{\left[ x \right]}}+7{{x}^{2}}-3x$. Here $\left[ x \right]$ is the greatest integer function which means the output is the greatest integer possible less than x.
As $x\in [-1,\infty )$, we can say $\left[ x \right]\in [-1,\infty )$ with only integer values.
We also know for any value of x; the exponential function always gets only positive value.
So, $x\in [-1,\infty )$, we can say ${{e}^{\left[ x \right]}}\in [\dfrac{1}{e},\infty )$.
So, we can see the function attains at least one continuous domain of $2\pi $ distance as it goes towards infinity.
So, we can say the greatest value of $f\left( x \right)=\cos \left( x{{e}^{\left[ x \right]}}+7{{x}^{2}}-3x \right)$ is 1.
We can also prove it by just showing 1 value of x for which $f\left( x \right)=\cos \left( x{{e}^{\left[ x \right]}}+7{{x}^{2}}-3x \right)=1$.
Let’s take $x=0$.
We find the value of $x{{e}^{\left[ x \right]}}+7{{x}^{2}}-3x$. So, $x{{e}^{\left[ x \right]}}+7{{x}^{2}}-3x=0$.
So, at $x=0$, $\cos 0=1$. We already got a point.
So, the correct answer is “Option B”.
Note: We need to always shoe at least one point which attains the maximum point. As the part $x{{e}^{\left[ x \right]}}$ can have some fixed points due to the factor that ${{e}^{\left[ x \right]}}$ attains only integer value. We have to show that at least one point of x satisfies the equation.
Recently Updated Pages
Master Class 11 Chemistry: Engaging Questions & Answers for Success

Which is the Longest Railway Platform in the world?

India Manned Space Mission Launch Target Month and Year 2025 Update

Which of the following pairs is correct?

The Turko-Afghan rule in India lasted for about?

Who wrote the novel "Pride and Prejudice"?

Trending doubts
What is meant by exothermic and endothermic reactions class 11 chemistry CBSE

Which type of resource is iron ore A Renewable B Biotic class 11 social science CBSE

10 examples of friction in our daily life

Differentiate between an exothermic and an endothermic class 11 chemistry CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells

1 Quintal is equal to a 110 kg b 10 kg c 100kg d 1000 class 11 physics CBSE

