Find the greatest numbers that will divide $445,$ $572,$ and $699$ leaving remainder $4,$ $5,$ and $6$ respectively.
Last updated date: 27th Mar 2023
•
Total views: 307.8k
•
Views today: 4.84k
Answer
307.8k+ views
Hint: We are given the numbers $445,$ $572,$ and $699$. So now, you have to first subtract the respective remainders from each term, then factorize it and find the HCF of all those new three numbers. You will get the answer.
Complete step-by-step answer:
Have you ever seen the show Fear Factor? It required contestants to face a variety of fear-inducing stunts to win the grand prize of $\$50000$. At the end of the show, the host would say to the winner, 'Evidently, fear is not a factor for you!' What exactly does that mean? Well, it means that fear doesn't play a part in their actions and decisions. So, then a 'factor' is something that affects an outcome. In mathematics, factors are the numbers that multiply to create another number.
The prime factorization of a number, then, is all of the prime numbers that multiply to create the original number. It would be pretty difficult to perform prime factorization if we didn't first refresh our memory on prime numbers. With that being said, a prime number is a number that can only be divided by one and itself.
The prime factorization of a number is the product of prime factors that make up that number.
So, prime factorization is writing the prime numbers that will multiply together to make a new number as a multiplication problem.
Prime factorization is the product of primes that could be multiplied together to make the original number. Two possible ways of getting the list of the primes include a factor tree and upside down division.
If a prime number occurs more than once in the factorization, it is usually expressed in exponential form to make it look more compact.
So the new numbers we get after subtracting the respective remainders are :
$445-4=441$
$572-5=567$
$699-6=693$
Now let us find the greatest common factor of these three numbers.
So, $441=3\times 3\times 7\times 7$
$567=3\times 3\times 3\times 3\times 7$
$693=3\times 3\times 7\times 11$
The highest common factor (HCF) of all these three numbers is $3\times 3\times 7=63$.
So, the required number is $63$.
Note: Read the question carefully. You should be familiar with the concepts. Also, you must know the HCF. While simplifying, don't miss any term. Also, take care that you simplify it in a simple manner. Many students make mistakes regarding signs so avoid it.
Complete step-by-step answer:
Have you ever seen the show Fear Factor? It required contestants to face a variety of fear-inducing stunts to win the grand prize of $\$50000$. At the end of the show, the host would say to the winner, 'Evidently, fear is not a factor for you!' What exactly does that mean? Well, it means that fear doesn't play a part in their actions and decisions. So, then a 'factor' is something that affects an outcome. In mathematics, factors are the numbers that multiply to create another number.
The prime factorization of a number, then, is all of the prime numbers that multiply to create the original number. It would be pretty difficult to perform prime factorization if we didn't first refresh our memory on prime numbers. With that being said, a prime number is a number that can only be divided by one and itself.
The prime factorization of a number is the product of prime factors that make up that number.
So, prime factorization is writing the prime numbers that will multiply together to make a new number as a multiplication problem.
Prime factorization is the product of primes that could be multiplied together to make the original number. Two possible ways of getting the list of the primes include a factor tree and upside down division.
If a prime number occurs more than once in the factorization, it is usually expressed in exponential form to make it look more compact.
So the new numbers we get after subtracting the respective remainders are :
$445-4=441$
$572-5=567$
$699-6=693$
Now let us find the greatest common factor of these three numbers.
So, $441=3\times 3\times 7\times 7$
$567=3\times 3\times 3\times 3\times 7$
$693=3\times 3\times 7\times 11$
The highest common factor (HCF) of all these three numbers is $3\times 3\times 7=63$.
So, the required number is $63$.
Note: Read the question carefully. You should be familiar with the concepts. Also, you must know the HCF. While simplifying, don't miss any term. Also, take care that you simplify it in a simple manner. Many students make mistakes regarding signs so avoid it.
Recently Updated Pages
Paulings electronegativity values for elements are class 11 chemistry CBSE

For a particle executing simple harmonic motion the class 11 physics CBSE

Does Nichrome have high resistance class 12 physics CBSE

The function f satisfies the functional equation 3fleft class 12 maths JEE_Main

Write a letter to the Principal of your school to plead class 10 english CBSE

Look at the handout below Write a letter to the organizers class 11 english CBSE

Trending doubts
What was the capital of Kanishka A Mathura B Purushapura class 7 social studies CBSE

Difference Between Plant Cell and Animal Cell

Write an application to the principal requesting five class 10 english CBSE

Ray optics is valid when characteristic dimensions class 12 physics CBSE

Give 10 examples for herbs , shrubs , climbers , creepers

Tropic of Cancer passes through how many states? Name them.

Write the 6 fundamental rights of India and explain in detail

Write a letter to the principal requesting him to grant class 10 english CBSE

Name the Largest and the Smallest Cell in the Human Body ?
