
Find the general solution for \[cos4x = cos2x\]
Answer
577.2k+ views
Hint: To find the general solution of \[cos4x = cos2x\], we use the formulas of \[cosx - cosy = - 2sin\dfrac{{x + y}}{2}sin\dfrac{{x - y}}{2}\;\]. And using \[sinx = siny\;\] general solution, which is \[x = n\pi \pm {\left( { - 1} \right)^n}y\;\], we get the desired result.
Complete step by step Answer:
Given \[cos4x = cos2x\]
\[ \Rightarrow cos4x - cos2x = 0\]
As, we know that, \[cosx - cosy = - 2sin\dfrac{{x + y}}{2}sin\dfrac{{x - y}}{2}\;\]
Replacing x with \[4x\] and y with \[2x\], we get,
\[ \Rightarrow cos4x - cos2x = - 2sin\dfrac{{4x + 2x}}{2}sin\dfrac{{4x - 2x}}{2}\;\]
On simplification we get,
\[ \Rightarrow cos4x - cos2x = - 2sin3x\sin x\;\]
As, \[cos4x - cos2x = 0\], we get,
\[ \Rightarrow - 2sin3x\sin x = 0\;\]
\[ \Rightarrow sin3x\sin x = 0\;\]
So, either \[sin3x = 0\;\]or \[sinx = 0\]
We solve \[sin3x = 0\;\]& \[sinx = 0\] separately,
General solution for \[sin3x = 0\]
Let \[sinx = siny\;\]___(1)
\[sin3x = sin3y\;\]___(2)
Given \[sin3x = 0\;\]
From (1) and (2)
\[sin3y = 0\]
As, \[\sin (0) = 0\], we get,
\[ \Rightarrow sin3y = sin\left( 0 \right)\]
Using, if \[\sin x = \sin y\], then \[x = y\],
\[ \Rightarrow 3y = 0\]
\[ \Rightarrow y = 0\]___(3)
General solution for \[sin3x = sin3y\;\]is
\[3x = n\pi \pm {\left( { - 1} \right)^n}3y\;\]where \[n \in Z\]
Putting \[y = 0\], we get,
\[ \Rightarrow 3x = n\pi \pm {\left( { - 1} \right)^n}0\]
\[ \Rightarrow 3x = n\pi \]
On dividing by 3 we get,
\[ \Rightarrow x = \dfrac{{n\pi }}{3}\] where \[n \in Z\]
General solution for \[sinx = 0\]
Let \[sinx = siny\]
Given \[sinx = 0\],
From (1) and (2)
\[siny = 0\]
As, \[\sin (0) = 0\], we get,
\[ \Rightarrow siny = sin\left( 0 \right)\]
Using, if \[\sin x = \sin y\], then \[x = y\],
\[ \Rightarrow y = 0\]
General solution for \[sinx = siny\]is
\[x = n\pi \pm {\left( { - 1} \right)^n}y\;\]where \[n \in Z\]
putting \[y = 0\],
\[x = n\pi \pm {\left( { - 1} \right)^n}0\]
\[ \Rightarrow x = n\pi \]where \[n \in Z\]
Therefore,
General Solution are
For \[sin3x = 0,x = \dfrac{{n\pi }}{3}\]
Or
For \[sinx = 0,x = n\pi \]
Where \[n \in Z\]
Note: We need to keep in mind that \[sinx = siny\] has infinite number of solutions. For every n in this solution we will have different solutions in here \[x = n\pi \pm {\left( { - 1} \right)^n}y\;\]. You should consider both the cases, and solve for both of them.
Complete step by step Answer:
Given \[cos4x = cos2x\]
\[ \Rightarrow cos4x - cos2x = 0\]
As, we know that, \[cosx - cosy = - 2sin\dfrac{{x + y}}{2}sin\dfrac{{x - y}}{2}\;\]
Replacing x with \[4x\] and y with \[2x\], we get,
\[ \Rightarrow cos4x - cos2x = - 2sin\dfrac{{4x + 2x}}{2}sin\dfrac{{4x - 2x}}{2}\;\]
On simplification we get,
\[ \Rightarrow cos4x - cos2x = - 2sin3x\sin x\;\]
As, \[cos4x - cos2x = 0\], we get,
\[ \Rightarrow - 2sin3x\sin x = 0\;\]
\[ \Rightarrow sin3x\sin x = 0\;\]
So, either \[sin3x = 0\;\]or \[sinx = 0\]
We solve \[sin3x = 0\;\]& \[sinx = 0\] separately,
General solution for \[sin3x = 0\]
Let \[sinx = siny\;\]___(1)
\[sin3x = sin3y\;\]___(2)
Given \[sin3x = 0\;\]
From (1) and (2)
\[sin3y = 0\]
As, \[\sin (0) = 0\], we get,
\[ \Rightarrow sin3y = sin\left( 0 \right)\]
Using, if \[\sin x = \sin y\], then \[x = y\],
\[ \Rightarrow 3y = 0\]
\[ \Rightarrow y = 0\]___(3)
General solution for \[sin3x = sin3y\;\]is
\[3x = n\pi \pm {\left( { - 1} \right)^n}3y\;\]where \[n \in Z\]
Putting \[y = 0\], we get,
\[ \Rightarrow 3x = n\pi \pm {\left( { - 1} \right)^n}0\]
\[ \Rightarrow 3x = n\pi \]
On dividing by 3 we get,
\[ \Rightarrow x = \dfrac{{n\pi }}{3}\] where \[n \in Z\]
General solution for \[sinx = 0\]
Let \[sinx = siny\]
Given \[sinx = 0\],
From (1) and (2)
\[siny = 0\]
As, \[\sin (0) = 0\], we get,
\[ \Rightarrow siny = sin\left( 0 \right)\]
Using, if \[\sin x = \sin y\], then \[x = y\],
\[ \Rightarrow y = 0\]
General solution for \[sinx = siny\]is
\[x = n\pi \pm {\left( { - 1} \right)^n}y\;\]where \[n \in Z\]
putting \[y = 0\],
\[x = n\pi \pm {\left( { - 1} \right)^n}0\]
\[ \Rightarrow x = n\pi \]where \[n \in Z\]
Therefore,
General Solution are
For \[sin3x = 0,x = \dfrac{{n\pi }}{3}\]
Or
For \[sinx = 0,x = n\pi \]
Where \[n \in Z\]
Note: We need to keep in mind that \[sinx = siny\] has infinite number of solutions. For every n in this solution we will have different solutions in here \[x = n\pi \pm {\left( { - 1} \right)^n}y\;\]. You should consider both the cases, and solve for both of them.
Recently Updated Pages
Master Class 11 Economics: Engaging Questions & Answers for Success

Master Class 11 English: Engaging Questions & Answers for Success

Master Class 11 Social Science: Engaging Questions & Answers for Success

Master Class 11 Biology: Engaging Questions & Answers for Success

Class 11 Question and Answer - Your Ultimate Solutions Guide

Master Class 11 Business Studies: Engaging Questions & Answers for Success

Trending doubts
What is meant by exothermic and endothermic reactions class 11 chemistry CBSE

10 examples of friction in our daily life

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells

What are Quantum numbers Explain the quantum number class 11 chemistry CBSE

1 Quintal is equal to a 110 kg b 10 kg c 100kg d 1000 class 11 physics CBSE

