
Find the formulae for the given expressions after simplifying it.
(i) \[{{a}^{3}}-{{b}^{3}}\]
(ii) \[{{a}^{3}}+{{b}^{3}}\]
(iii) \[{{\left( a+b \right)}^{3}}\]
(iv) \[{{\left( a-b \right)}^{3}}\]
Answer
598.2k+ views
Hint: To solve the expression \[\left( {{a}^{3}}-{{b}^{3}} \right)\], just add and subtract the terms \[{{a}^{2}}b\] and \[a{{b}^{2}}\] . Now, arrange the expression as \[{{a}^{2}}\left( a-b \right)+ab\left( a-b \right)+{{b}^{2}}\left( a-b \right)\] . Then, take the term \[\left( a-b \right)\] as common and factorize the expression. Similarly, to solve the expression \[\left( {{a}^{3}}+{{b}^{3}} \right)\], just add and subtract the terms \[{{a}^{2}}b\] and \[a{{b}^{2}}\] . Now, arrange the expression as \[{{a}^{2}}\left( a+b \right)-ab\left( a+b \right)+{{b}^{2}}\left( a+b \right)\] . Then, take the term \[\left( a+b \right)\] as common and factorize the expression. Now, to solve the expression \[{{\left( a+b \right)}^{3}}\] , write it as the product of the terms \[{{\left( a+b \right)}^{2}}\] and \[\left( a+b \right)\] . Use the formula \[{{\left( x+y \right)}^{2}}={{x}^{2}}+2xy+{{y}^{2}}\] and expand the term \[{{\left( a+b \right)}^{2}}\] . Then, multiply the terms \[\left( {{a}^{2}}+2ab+{{b}^{2}} \right)\] and \[\left( a+b \right)\] , and then solve it further. Now, to solve the expression \[{{\left( a-b \right)}^{3}}\] , write it as the product of the terms \[{{\left( a-b \right)}^{2}}\] and \[\left( a-b \right)\] . Use the formula \[{{\left( x-y \right)}^{2}}={{x}^{2}}-2xy+{{y}^{2}}\] and expand the term \[{{\left( a-b \right)}^{2}}\] . Then, multiply the terms \[\left( {{a}^{2}}-2ab+{{b}^{2}} \right)\] and \[\left( a-b \right)\] , and then solve it further.
Complete step by step solution:
According to the question, we have four expressions. We have to simplify those four given expressions.
In part (i), we have to simplify the expression,
\[{{a}^{3}}-{{b}^{3}}\] ……………………….(1)
Adding and subtracting the term \[{{a}^{2}}b\] in equation (1), we get
\[{{a}^{3}}+{{a}^{2}}b-{{a}^{2}}b-{{b}^{3}}\] ……………………..(2)
Now, adding and subtracting the term \[a{{b}^{2}}\] in equation (2), we get
\[{{a}^{3}}+{{a}^{2}}b-{{a}^{2}}b+a{{b}^{2}}-a{{b}^{2}}-{{b}^{3}}\] ……………………(3)
Arranging the terms in equation (3), we get
\[={{a}^{3}}-{{a}^{2}}b+{{a}^{2}}b-a{{b}^{2}}+a{{b}^{2}}-{{b}^{3}}\]
\[={{a}^{2}}\left( a-b \right)+ab\left( a-b \right)+{{b}^{2}}\left( a-b \right)\] ………………………………(4)
Now, taking the term \[\left( a-b \right)\] in equation (4), we get
\[=\left( a-b \right)\left( {{a}^{2}}+ab+{{b}^{2}} \right)\] .
Therefore, the formula for \[\left( {{a}^{3}}-{{b}^{3}} \right)\] after simplifying it is \[\left( a-b \right)\left( {{a}^{2}}+ab+{{b}^{2}} \right)\] .
So, \[\left( {{a}^{3}}-{{b}^{3}} \right)=\left( a-b \right)\left( {{a}^{2}}+ab+{{b}^{2}} \right)\] ……………………(5)
In part (ii), we have to simplify the expression,
\[{{a}^{3}}+{{b}^{3}}\] ……………………….(6)
Adding and subtracting the term \[{{a}^{2}}b\] in equation (6), we get
\[{{a}^{3}}+{{a}^{2}}b-{{a}^{2}}b+{{b}^{3}}\] ……………………..(7)
Now, adding and subtracting the term \[a{{b}^{2}}\] in equation (7), we get
\[{{a}^{3}}+{{a}^{2}}b-{{a}^{2}}b+a{{b}^{2}}-a{{b}^{2}}+{{b}^{3}}\] ……………………(8)
Arranging the terms in equation (8), we get
\[={{a}^{3}}+{{a}^{2}}b-{{a}^{2}}b-a{{b}^{2}}+a{{b}^{2}}+{{b}^{3}}\]
\[={{a}^{2}}\left( a+b \right)-ab\left( a+b \right)+{{b}^{2}}\left( a+b \right)\] ………………………………(9)
Now, taking the term \[\left( a+b \right)\] in equation (9), we get
\[=\left( a+b \right)\left( {{a}^{2}}-ab+{{b}^{2}} \right)\] .
Therefore, the formula for \[\left( {{a}^{3}}+{{b}^{3}} \right)\] after simplifying it is \[\left( a+b \right)\left( {{a}^{2}}-ab+{{b}^{2}} \right)\] .
So, \[\left( {{a}^{3}}+{{b}^{3}} \right)=\left( a+b \right)\left( {{a}^{2}}-ab+{{b}^{2}} \right)\] ……………………(10)
In part (iii), we have to simplify the expression,
\[{{\left( a+b \right)}^{3}}\] ……………………………..(11)
We can write \[{{\left( a+b \right)}^{3}}\] as the product of the terms \[{{\left( a+b \right)}^{2}}\] and \[\left( a+b \right)\] .
Now, on transforming equation (11), we get
\[{{\left( a+b \right)}^{3}}={{\left( a+b \right)}^{2}}\times \left( a+b \right)\] ………………………..(12)
We know the formula, \[{{\left( x+y \right)}^{2}}={{x}^{2}}+2xy+{{y}^{2}}\] ………………………….(13)
Using equation (13) and transforming equation (12), we get
\[{{\left( a+b \right)}^{3}}=\left( {{a}^{2}}+2ab+{{b}^{2}} \right)\times \left( a+b \right)\] ………………………………(14)
Now, multiplying the terms \[\left( {{a}^{2}}+2ab+{{b}^{2}} \right)\] and \[\left( a+b \right)\] of equation (14), we get
\[\begin{align}
& {{\left( a+b \right)}^{3}}=\left( {{a}^{2}}+2ab+{{b}^{2}} \right)\times \left( a+b \right) \\
& {{\left( a+b \right)}^{3}}={{a}^{2}}.a+2ab.a+{{b}^{2}}.a+{{a}^{2}}.b+2ab.b+{{b}^{2}}.b \\
& {{\left( a+b \right)}^{3}}={{a}^{3}}+2{{a}^{2}}b+a{{b}^{2}}+{{a}^{2}}b+2a{{b}^{2}}+{{b}^{3}} \\
\end{align}\]
\[{{\left( a+b \right)}^{3}}={{a}^{3}}+3{{a}^{2}}b+3a{{b}^{2}}+{{b}^{3}}\] …………………………………….(15)
Simplifying equation (15), we get
\[{{\left( a+b \right)}^{3}}={{a}^{3}}+{{b}^{3}}+3ab\left( a+b \right)\] .
Therefore, the formula for \[{{\left( a+b \right)}^{3}}\] after simplifying it is \[\left\{ {{a}^{3}}+{{b}^{3}}+3ab\left( a+b \right) \right\}\] .
So, \[{{\left( a+b \right)}^{3}}=\left\{ {{a}^{3}}+{{b}^{3}}+3ab\left( a+b \right) \right\}\] ……………………………(16)
In part (iv), we have to simplify the expression,
\[{{\left( a-b \right)}^{3}}\] ……………………………..(17)
We can write \[{{\left( a-b \right)}^{3}}\] as the product of the terms \[{{\left( a-b \right)}^{2}}\] and \[\left( a-b \right)\] .
Now, on transforming equation (17), we get
\[{{\left( a-b \right)}^{3}}={{\left( a-b \right)}^{2}}\times \left( a-b \right)\] ………………………..(18)
We know the formula, \[{{\left( x-y \right)}^{2}}={{x}^{2}}-2xy+{{y}^{2}}\] ………………………….(19)
Using equation (19) and transforming equation (18), we get
\[{{\left( a-b \right)}^{3}}=\left( {{a}^{2}}-2ab+{{b}^{2}} \right)\times \left( a-b \right)\] ………………………………(20)
Now, multiplying the terms \[\left( {{a}^{2}}-2ab+{{b}^{2}} \right)\] and \[\left( a-b \right)\] of equation (20), we get
\[\begin{align}
& {{\left( a-b \right)}^{3}}=\left( {{a}^{2}}-2ab+{{b}^{2}} \right)\times \left( a-b \right) \\
& {{\left( a-b \right)}^{3}}={{a}^{2}}.a-2ab.a+{{b}^{2}}.a-{{a}^{2}}.b+2ab.b-{{b}^{2}}.b \\
& {{\left( a-b \right)}^{3}}={{a}^{3}}-2{{a}^{2}}b+a{{b}^{2}}-{{a}^{2}}b+2a{{b}^{2}}-{{b}^{3}} \\
\end{align}\]
\[{{\left( a-b \right)}^{3}}={{a}^{3}}-3{{a}^{2}}b+3a{{b}^{2}}-{{b}^{3}}\] …………………………………….(21)
Simplifying equation (21), we get
\[{{\left( a-b \right)}^{3}}={{a}^{3}}-{{b}^{3}}-3ab\left( a-b \right)\] .
Therefore, the formula for \[{{\left( a-b \right)}^{3}}\] after simplifying it is \[\left\{ {{a}^{3}}-{{b}^{3}}-3ab\left( a-b \right) \right\}\] .
So, \[{{\left( a-b \right)}^{3}}=\left\{ {{a}^{3}}-{{b}^{3}}-3ab\left( a-b \right) \right\}\] …………………………(23)
Hence, we have got the formulas from equation (5), equation (10), equation (16), and equation (22), we have
\[\left( {{a}^{3}}-{{b}^{3}} \right)=\left( a-b \right)\left( {{a}^{2}}+ab+{{b}^{2}} \right)\] ,
\[\left( {{a}^{3}}+{{b}^{3}} \right)=\left( a+b \right)\left( {{a}^{2}}-ab+{{b}^{2}} \right)\] ,
\[{{\left( a+b \right)}^{3}}=\left\{ {{a}^{3}}+{{b}^{3}}+3ab\left( a+b \right) \right\}\] ,
\[{{\left( a-b \right)}^{3}}=\left\{ {{a}^{3}}-{{b}^{3}}-3ab\left( a-b \right) \right\}\] .
Note: In this question, one might get confused while solving the expressions \[\left( {{a}^{3}}-{{b}^{3}} \right)\] and \[\left( {{a}^{3}}+{{b}^{3}} \right)\] because we don’t have any formulas so that we can use it here and solve these two expressions. The only way to solve these two expressions is to add and subtract the terms \[{{a}^{2}}b\] and \[a{{b}^{2}}\] in the expression \[\left( {{a}^{3}}+{{b}^{3}} \right)\] .
Complete step by step solution:
According to the question, we have four expressions. We have to simplify those four given expressions.
In part (i), we have to simplify the expression,
\[{{a}^{3}}-{{b}^{3}}\] ……………………….(1)
Adding and subtracting the term \[{{a}^{2}}b\] in equation (1), we get
\[{{a}^{3}}+{{a}^{2}}b-{{a}^{2}}b-{{b}^{3}}\] ……………………..(2)
Now, adding and subtracting the term \[a{{b}^{2}}\] in equation (2), we get
\[{{a}^{3}}+{{a}^{2}}b-{{a}^{2}}b+a{{b}^{2}}-a{{b}^{2}}-{{b}^{3}}\] ……………………(3)
Arranging the terms in equation (3), we get
\[={{a}^{3}}-{{a}^{2}}b+{{a}^{2}}b-a{{b}^{2}}+a{{b}^{2}}-{{b}^{3}}\]
\[={{a}^{2}}\left( a-b \right)+ab\left( a-b \right)+{{b}^{2}}\left( a-b \right)\] ………………………………(4)
Now, taking the term \[\left( a-b \right)\] in equation (4), we get
\[=\left( a-b \right)\left( {{a}^{2}}+ab+{{b}^{2}} \right)\] .
Therefore, the formula for \[\left( {{a}^{3}}-{{b}^{3}} \right)\] after simplifying it is \[\left( a-b \right)\left( {{a}^{2}}+ab+{{b}^{2}} \right)\] .
So, \[\left( {{a}^{3}}-{{b}^{3}} \right)=\left( a-b \right)\left( {{a}^{2}}+ab+{{b}^{2}} \right)\] ……………………(5)
In part (ii), we have to simplify the expression,
\[{{a}^{3}}+{{b}^{3}}\] ……………………….(6)
Adding and subtracting the term \[{{a}^{2}}b\] in equation (6), we get
\[{{a}^{3}}+{{a}^{2}}b-{{a}^{2}}b+{{b}^{3}}\] ……………………..(7)
Now, adding and subtracting the term \[a{{b}^{2}}\] in equation (7), we get
\[{{a}^{3}}+{{a}^{2}}b-{{a}^{2}}b+a{{b}^{2}}-a{{b}^{2}}+{{b}^{3}}\] ……………………(8)
Arranging the terms in equation (8), we get
\[={{a}^{3}}+{{a}^{2}}b-{{a}^{2}}b-a{{b}^{2}}+a{{b}^{2}}+{{b}^{3}}\]
\[={{a}^{2}}\left( a+b \right)-ab\left( a+b \right)+{{b}^{2}}\left( a+b \right)\] ………………………………(9)
Now, taking the term \[\left( a+b \right)\] in equation (9), we get
\[=\left( a+b \right)\left( {{a}^{2}}-ab+{{b}^{2}} \right)\] .
Therefore, the formula for \[\left( {{a}^{3}}+{{b}^{3}} \right)\] after simplifying it is \[\left( a+b \right)\left( {{a}^{2}}-ab+{{b}^{2}} \right)\] .
So, \[\left( {{a}^{3}}+{{b}^{3}} \right)=\left( a+b \right)\left( {{a}^{2}}-ab+{{b}^{2}} \right)\] ……………………(10)
In part (iii), we have to simplify the expression,
\[{{\left( a+b \right)}^{3}}\] ……………………………..(11)
We can write \[{{\left( a+b \right)}^{3}}\] as the product of the terms \[{{\left( a+b \right)}^{2}}\] and \[\left( a+b \right)\] .
Now, on transforming equation (11), we get
\[{{\left( a+b \right)}^{3}}={{\left( a+b \right)}^{2}}\times \left( a+b \right)\] ………………………..(12)
We know the formula, \[{{\left( x+y \right)}^{2}}={{x}^{2}}+2xy+{{y}^{2}}\] ………………………….(13)
Using equation (13) and transforming equation (12), we get
\[{{\left( a+b \right)}^{3}}=\left( {{a}^{2}}+2ab+{{b}^{2}} \right)\times \left( a+b \right)\] ………………………………(14)
Now, multiplying the terms \[\left( {{a}^{2}}+2ab+{{b}^{2}} \right)\] and \[\left( a+b \right)\] of equation (14), we get
\[\begin{align}
& {{\left( a+b \right)}^{3}}=\left( {{a}^{2}}+2ab+{{b}^{2}} \right)\times \left( a+b \right) \\
& {{\left( a+b \right)}^{3}}={{a}^{2}}.a+2ab.a+{{b}^{2}}.a+{{a}^{2}}.b+2ab.b+{{b}^{2}}.b \\
& {{\left( a+b \right)}^{3}}={{a}^{3}}+2{{a}^{2}}b+a{{b}^{2}}+{{a}^{2}}b+2a{{b}^{2}}+{{b}^{3}} \\
\end{align}\]
\[{{\left( a+b \right)}^{3}}={{a}^{3}}+3{{a}^{2}}b+3a{{b}^{2}}+{{b}^{3}}\] …………………………………….(15)
Simplifying equation (15), we get
\[{{\left( a+b \right)}^{3}}={{a}^{3}}+{{b}^{3}}+3ab\left( a+b \right)\] .
Therefore, the formula for \[{{\left( a+b \right)}^{3}}\] after simplifying it is \[\left\{ {{a}^{3}}+{{b}^{3}}+3ab\left( a+b \right) \right\}\] .
So, \[{{\left( a+b \right)}^{3}}=\left\{ {{a}^{3}}+{{b}^{3}}+3ab\left( a+b \right) \right\}\] ……………………………(16)
In part (iv), we have to simplify the expression,
\[{{\left( a-b \right)}^{3}}\] ……………………………..(17)
We can write \[{{\left( a-b \right)}^{3}}\] as the product of the terms \[{{\left( a-b \right)}^{2}}\] and \[\left( a-b \right)\] .
Now, on transforming equation (17), we get
\[{{\left( a-b \right)}^{3}}={{\left( a-b \right)}^{2}}\times \left( a-b \right)\] ………………………..(18)
We know the formula, \[{{\left( x-y \right)}^{2}}={{x}^{2}}-2xy+{{y}^{2}}\] ………………………….(19)
Using equation (19) and transforming equation (18), we get
\[{{\left( a-b \right)}^{3}}=\left( {{a}^{2}}-2ab+{{b}^{2}} \right)\times \left( a-b \right)\] ………………………………(20)
Now, multiplying the terms \[\left( {{a}^{2}}-2ab+{{b}^{2}} \right)\] and \[\left( a-b \right)\] of equation (20), we get
\[\begin{align}
& {{\left( a-b \right)}^{3}}=\left( {{a}^{2}}-2ab+{{b}^{2}} \right)\times \left( a-b \right) \\
& {{\left( a-b \right)}^{3}}={{a}^{2}}.a-2ab.a+{{b}^{2}}.a-{{a}^{2}}.b+2ab.b-{{b}^{2}}.b \\
& {{\left( a-b \right)}^{3}}={{a}^{3}}-2{{a}^{2}}b+a{{b}^{2}}-{{a}^{2}}b+2a{{b}^{2}}-{{b}^{3}} \\
\end{align}\]
\[{{\left( a-b \right)}^{3}}={{a}^{3}}-3{{a}^{2}}b+3a{{b}^{2}}-{{b}^{3}}\] …………………………………….(21)
Simplifying equation (21), we get
\[{{\left( a-b \right)}^{3}}={{a}^{3}}-{{b}^{3}}-3ab\left( a-b \right)\] .
Therefore, the formula for \[{{\left( a-b \right)}^{3}}\] after simplifying it is \[\left\{ {{a}^{3}}-{{b}^{3}}-3ab\left( a-b \right) \right\}\] .
So, \[{{\left( a-b \right)}^{3}}=\left\{ {{a}^{3}}-{{b}^{3}}-3ab\left( a-b \right) \right\}\] …………………………(23)
Hence, we have got the formulas from equation (5), equation (10), equation (16), and equation (22), we have
\[\left( {{a}^{3}}-{{b}^{3}} \right)=\left( a-b \right)\left( {{a}^{2}}+ab+{{b}^{2}} \right)\] ,
\[\left( {{a}^{3}}+{{b}^{3}} \right)=\left( a+b \right)\left( {{a}^{2}}-ab+{{b}^{2}} \right)\] ,
\[{{\left( a+b \right)}^{3}}=\left\{ {{a}^{3}}+{{b}^{3}}+3ab\left( a+b \right) \right\}\] ,
\[{{\left( a-b \right)}^{3}}=\left\{ {{a}^{3}}-{{b}^{3}}-3ab\left( a-b \right) \right\}\] .
Note: In this question, one might get confused while solving the expressions \[\left( {{a}^{3}}-{{b}^{3}} \right)\] and \[\left( {{a}^{3}}+{{b}^{3}} \right)\] because we don’t have any formulas so that we can use it here and solve these two expressions. The only way to solve these two expressions is to add and subtract the terms \[{{a}^{2}}b\] and \[a{{b}^{2}}\] in the expression \[\left( {{a}^{3}}+{{b}^{3}} \right)\] .
Recently Updated Pages
Master Class 10 Computer Science: Engaging Questions & Answers for Success

Master Class 10 General Knowledge: Engaging Questions & Answers for Success

Master Class 10 English: Engaging Questions & Answers for Success

Master Class 10 Social Science: Engaging Questions & Answers for Success

Master Class 10 Maths: Engaging Questions & Answers for Success

Master Class 10 Science: Engaging Questions & Answers for Success

Trending doubts
What is the median of the first 10 natural numbers class 10 maths CBSE

Which women's tennis player has 24 Grand Slam singles titles?

Who is the Brand Ambassador of Incredible India?

Why is there a time difference of about 5 hours between class 10 social science CBSE

Write a letter to the principal requesting him to grant class 10 english CBSE

State and prove converse of BPT Basic Proportionality class 10 maths CBSE

