
Find the formulae for the given expressions after simplifying it.
(i) \[{{a}^{3}}-{{b}^{3}}\]
(ii) \[{{a}^{3}}+{{b}^{3}}\]
(iii) \[{{\left( a+b \right)}^{3}}\]
(iv) \[{{\left( a-b \right)}^{3}}\]
Answer
583.2k+ views
Hint: To solve the expression \[\left( {{a}^{3}}-{{b}^{3}} \right)\], just add and subtract the terms \[{{a}^{2}}b\] and \[a{{b}^{2}}\] . Now, arrange the expression as \[{{a}^{2}}\left( a-b \right)+ab\left( a-b \right)+{{b}^{2}}\left( a-b \right)\] . Then, take the term \[\left( a-b \right)\] as common and factorize the expression. Similarly, to solve the expression \[\left( {{a}^{3}}+{{b}^{3}} \right)\], just add and subtract the terms \[{{a}^{2}}b\] and \[a{{b}^{2}}\] . Now, arrange the expression as \[{{a}^{2}}\left( a+b \right)-ab\left( a+b \right)+{{b}^{2}}\left( a+b \right)\] . Then, take the term \[\left( a+b \right)\] as common and factorize the expression. Now, to solve the expression \[{{\left( a+b \right)}^{3}}\] , write it as the product of the terms \[{{\left( a+b \right)}^{2}}\] and \[\left( a+b \right)\] . Use the formula \[{{\left( x+y \right)}^{2}}={{x}^{2}}+2xy+{{y}^{2}}\] and expand the term \[{{\left( a+b \right)}^{2}}\] . Then, multiply the terms \[\left( {{a}^{2}}+2ab+{{b}^{2}} \right)\] and \[\left( a+b \right)\] , and then solve it further. Now, to solve the expression \[{{\left( a-b \right)}^{3}}\] , write it as the product of the terms \[{{\left( a-b \right)}^{2}}\] and \[\left( a-b \right)\] . Use the formula \[{{\left( x-y \right)}^{2}}={{x}^{2}}-2xy+{{y}^{2}}\] and expand the term \[{{\left( a-b \right)}^{2}}\] . Then, multiply the terms \[\left( {{a}^{2}}-2ab+{{b}^{2}} \right)\] and \[\left( a-b \right)\] , and then solve it further.
Complete step by step solution:
According to the question, we have four expressions. We have to simplify those four given expressions.
In part (i), we have to simplify the expression,
\[{{a}^{3}}-{{b}^{3}}\] ……………………….(1)
Adding and subtracting the term \[{{a}^{2}}b\] in equation (1), we get
\[{{a}^{3}}+{{a}^{2}}b-{{a}^{2}}b-{{b}^{3}}\] ……………………..(2)
Now, adding and subtracting the term \[a{{b}^{2}}\] in equation (2), we get
\[{{a}^{3}}+{{a}^{2}}b-{{a}^{2}}b+a{{b}^{2}}-a{{b}^{2}}-{{b}^{3}}\] ……………………(3)
Arranging the terms in equation (3), we get
\[={{a}^{3}}-{{a}^{2}}b+{{a}^{2}}b-a{{b}^{2}}+a{{b}^{2}}-{{b}^{3}}\]
\[={{a}^{2}}\left( a-b \right)+ab\left( a-b \right)+{{b}^{2}}\left( a-b \right)\] ………………………………(4)
Now, taking the term \[\left( a-b \right)\] in equation (4), we get
\[=\left( a-b \right)\left( {{a}^{2}}+ab+{{b}^{2}} \right)\] .
Therefore, the formula for \[\left( {{a}^{3}}-{{b}^{3}} \right)\] after simplifying it is \[\left( a-b \right)\left( {{a}^{2}}+ab+{{b}^{2}} \right)\] .
So, \[\left( {{a}^{3}}-{{b}^{3}} \right)=\left( a-b \right)\left( {{a}^{2}}+ab+{{b}^{2}} \right)\] ……………………(5)
In part (ii), we have to simplify the expression,
\[{{a}^{3}}+{{b}^{3}}\] ……………………….(6)
Adding and subtracting the term \[{{a}^{2}}b\] in equation (6), we get
\[{{a}^{3}}+{{a}^{2}}b-{{a}^{2}}b+{{b}^{3}}\] ……………………..(7)
Now, adding and subtracting the term \[a{{b}^{2}}\] in equation (7), we get
\[{{a}^{3}}+{{a}^{2}}b-{{a}^{2}}b+a{{b}^{2}}-a{{b}^{2}}+{{b}^{3}}\] ……………………(8)
Arranging the terms in equation (8), we get
\[={{a}^{3}}+{{a}^{2}}b-{{a}^{2}}b-a{{b}^{2}}+a{{b}^{2}}+{{b}^{3}}\]
\[={{a}^{2}}\left( a+b \right)-ab\left( a+b \right)+{{b}^{2}}\left( a+b \right)\] ………………………………(9)
Now, taking the term \[\left( a+b \right)\] in equation (9), we get
\[=\left( a+b \right)\left( {{a}^{2}}-ab+{{b}^{2}} \right)\] .
Therefore, the formula for \[\left( {{a}^{3}}+{{b}^{3}} \right)\] after simplifying it is \[\left( a+b \right)\left( {{a}^{2}}-ab+{{b}^{2}} \right)\] .
So, \[\left( {{a}^{3}}+{{b}^{3}} \right)=\left( a+b \right)\left( {{a}^{2}}-ab+{{b}^{2}} \right)\] ……………………(10)
In part (iii), we have to simplify the expression,
\[{{\left( a+b \right)}^{3}}\] ……………………………..(11)
We can write \[{{\left( a+b \right)}^{3}}\] as the product of the terms \[{{\left( a+b \right)}^{2}}\] and \[\left( a+b \right)\] .
Now, on transforming equation (11), we get
\[{{\left( a+b \right)}^{3}}={{\left( a+b \right)}^{2}}\times \left( a+b \right)\] ………………………..(12)
We know the formula, \[{{\left( x+y \right)}^{2}}={{x}^{2}}+2xy+{{y}^{2}}\] ………………………….(13)
Using equation (13) and transforming equation (12), we get
\[{{\left( a+b \right)}^{3}}=\left( {{a}^{2}}+2ab+{{b}^{2}} \right)\times \left( a+b \right)\] ………………………………(14)
Now, multiplying the terms \[\left( {{a}^{2}}+2ab+{{b}^{2}} \right)\] and \[\left( a+b \right)\] of equation (14), we get
\[\begin{align}
& {{\left( a+b \right)}^{3}}=\left( {{a}^{2}}+2ab+{{b}^{2}} \right)\times \left( a+b \right) \\
& {{\left( a+b \right)}^{3}}={{a}^{2}}.a+2ab.a+{{b}^{2}}.a+{{a}^{2}}.b+2ab.b+{{b}^{2}}.b \\
& {{\left( a+b \right)}^{3}}={{a}^{3}}+2{{a}^{2}}b+a{{b}^{2}}+{{a}^{2}}b+2a{{b}^{2}}+{{b}^{3}} \\
\end{align}\]
\[{{\left( a+b \right)}^{3}}={{a}^{3}}+3{{a}^{2}}b+3a{{b}^{2}}+{{b}^{3}}\] …………………………………….(15)
Simplifying equation (15), we get
\[{{\left( a+b \right)}^{3}}={{a}^{3}}+{{b}^{3}}+3ab\left( a+b \right)\] .
Therefore, the formula for \[{{\left( a+b \right)}^{3}}\] after simplifying it is \[\left\{ {{a}^{3}}+{{b}^{3}}+3ab\left( a+b \right) \right\}\] .
So, \[{{\left( a+b \right)}^{3}}=\left\{ {{a}^{3}}+{{b}^{3}}+3ab\left( a+b \right) \right\}\] ……………………………(16)
In part (iv), we have to simplify the expression,
\[{{\left( a-b \right)}^{3}}\] ……………………………..(17)
We can write \[{{\left( a-b \right)}^{3}}\] as the product of the terms \[{{\left( a-b \right)}^{2}}\] and \[\left( a-b \right)\] .
Now, on transforming equation (17), we get
\[{{\left( a-b \right)}^{3}}={{\left( a-b \right)}^{2}}\times \left( a-b \right)\] ………………………..(18)
We know the formula, \[{{\left( x-y \right)}^{2}}={{x}^{2}}-2xy+{{y}^{2}}\] ………………………….(19)
Using equation (19) and transforming equation (18), we get
\[{{\left( a-b \right)}^{3}}=\left( {{a}^{2}}-2ab+{{b}^{2}} \right)\times \left( a-b \right)\] ………………………………(20)
Now, multiplying the terms \[\left( {{a}^{2}}-2ab+{{b}^{2}} \right)\] and \[\left( a-b \right)\] of equation (20), we get
\[\begin{align}
& {{\left( a-b \right)}^{3}}=\left( {{a}^{2}}-2ab+{{b}^{2}} \right)\times \left( a-b \right) \\
& {{\left( a-b \right)}^{3}}={{a}^{2}}.a-2ab.a+{{b}^{2}}.a-{{a}^{2}}.b+2ab.b-{{b}^{2}}.b \\
& {{\left( a-b \right)}^{3}}={{a}^{3}}-2{{a}^{2}}b+a{{b}^{2}}-{{a}^{2}}b+2a{{b}^{2}}-{{b}^{3}} \\
\end{align}\]
\[{{\left( a-b \right)}^{3}}={{a}^{3}}-3{{a}^{2}}b+3a{{b}^{2}}-{{b}^{3}}\] …………………………………….(21)
Simplifying equation (21), we get
\[{{\left( a-b \right)}^{3}}={{a}^{3}}-{{b}^{3}}-3ab\left( a-b \right)\] .
Therefore, the formula for \[{{\left( a-b \right)}^{3}}\] after simplifying it is \[\left\{ {{a}^{3}}-{{b}^{3}}-3ab\left( a-b \right) \right\}\] .
So, \[{{\left( a-b \right)}^{3}}=\left\{ {{a}^{3}}-{{b}^{3}}-3ab\left( a-b \right) \right\}\] …………………………(23)
Hence, we have got the formulas from equation (5), equation (10), equation (16), and equation (22), we have
\[\left( {{a}^{3}}-{{b}^{3}} \right)=\left( a-b \right)\left( {{a}^{2}}+ab+{{b}^{2}} \right)\] ,
\[\left( {{a}^{3}}+{{b}^{3}} \right)=\left( a+b \right)\left( {{a}^{2}}-ab+{{b}^{2}} \right)\] ,
\[{{\left( a+b \right)}^{3}}=\left\{ {{a}^{3}}+{{b}^{3}}+3ab\left( a+b \right) \right\}\] ,
\[{{\left( a-b \right)}^{3}}=\left\{ {{a}^{3}}-{{b}^{3}}-3ab\left( a-b \right) \right\}\] .
Note: In this question, one might get confused while solving the expressions \[\left( {{a}^{3}}-{{b}^{3}} \right)\] and \[\left( {{a}^{3}}+{{b}^{3}} \right)\] because we don’t have any formulas so that we can use it here and solve these two expressions. The only way to solve these two expressions is to add and subtract the terms \[{{a}^{2}}b\] and \[a{{b}^{2}}\] in the expression \[\left( {{a}^{3}}+{{b}^{3}} \right)\] .
Complete step by step solution:
According to the question, we have four expressions. We have to simplify those four given expressions.
In part (i), we have to simplify the expression,
\[{{a}^{3}}-{{b}^{3}}\] ……………………….(1)
Adding and subtracting the term \[{{a}^{2}}b\] in equation (1), we get
\[{{a}^{3}}+{{a}^{2}}b-{{a}^{2}}b-{{b}^{3}}\] ……………………..(2)
Now, adding and subtracting the term \[a{{b}^{2}}\] in equation (2), we get
\[{{a}^{3}}+{{a}^{2}}b-{{a}^{2}}b+a{{b}^{2}}-a{{b}^{2}}-{{b}^{3}}\] ……………………(3)
Arranging the terms in equation (3), we get
\[={{a}^{3}}-{{a}^{2}}b+{{a}^{2}}b-a{{b}^{2}}+a{{b}^{2}}-{{b}^{3}}\]
\[={{a}^{2}}\left( a-b \right)+ab\left( a-b \right)+{{b}^{2}}\left( a-b \right)\] ………………………………(4)
Now, taking the term \[\left( a-b \right)\] in equation (4), we get
\[=\left( a-b \right)\left( {{a}^{2}}+ab+{{b}^{2}} \right)\] .
Therefore, the formula for \[\left( {{a}^{3}}-{{b}^{3}} \right)\] after simplifying it is \[\left( a-b \right)\left( {{a}^{2}}+ab+{{b}^{2}} \right)\] .
So, \[\left( {{a}^{3}}-{{b}^{3}} \right)=\left( a-b \right)\left( {{a}^{2}}+ab+{{b}^{2}} \right)\] ……………………(5)
In part (ii), we have to simplify the expression,
\[{{a}^{3}}+{{b}^{3}}\] ……………………….(6)
Adding and subtracting the term \[{{a}^{2}}b\] in equation (6), we get
\[{{a}^{3}}+{{a}^{2}}b-{{a}^{2}}b+{{b}^{3}}\] ……………………..(7)
Now, adding and subtracting the term \[a{{b}^{2}}\] in equation (7), we get
\[{{a}^{3}}+{{a}^{2}}b-{{a}^{2}}b+a{{b}^{2}}-a{{b}^{2}}+{{b}^{3}}\] ……………………(8)
Arranging the terms in equation (8), we get
\[={{a}^{3}}+{{a}^{2}}b-{{a}^{2}}b-a{{b}^{2}}+a{{b}^{2}}+{{b}^{3}}\]
\[={{a}^{2}}\left( a+b \right)-ab\left( a+b \right)+{{b}^{2}}\left( a+b \right)\] ………………………………(9)
Now, taking the term \[\left( a+b \right)\] in equation (9), we get
\[=\left( a+b \right)\left( {{a}^{2}}-ab+{{b}^{2}} \right)\] .
Therefore, the formula for \[\left( {{a}^{3}}+{{b}^{3}} \right)\] after simplifying it is \[\left( a+b \right)\left( {{a}^{2}}-ab+{{b}^{2}} \right)\] .
So, \[\left( {{a}^{3}}+{{b}^{3}} \right)=\left( a+b \right)\left( {{a}^{2}}-ab+{{b}^{2}} \right)\] ……………………(10)
In part (iii), we have to simplify the expression,
\[{{\left( a+b \right)}^{3}}\] ……………………………..(11)
We can write \[{{\left( a+b \right)}^{3}}\] as the product of the terms \[{{\left( a+b \right)}^{2}}\] and \[\left( a+b \right)\] .
Now, on transforming equation (11), we get
\[{{\left( a+b \right)}^{3}}={{\left( a+b \right)}^{2}}\times \left( a+b \right)\] ………………………..(12)
We know the formula, \[{{\left( x+y \right)}^{2}}={{x}^{2}}+2xy+{{y}^{2}}\] ………………………….(13)
Using equation (13) and transforming equation (12), we get
\[{{\left( a+b \right)}^{3}}=\left( {{a}^{2}}+2ab+{{b}^{2}} \right)\times \left( a+b \right)\] ………………………………(14)
Now, multiplying the terms \[\left( {{a}^{2}}+2ab+{{b}^{2}} \right)\] and \[\left( a+b \right)\] of equation (14), we get
\[\begin{align}
& {{\left( a+b \right)}^{3}}=\left( {{a}^{2}}+2ab+{{b}^{2}} \right)\times \left( a+b \right) \\
& {{\left( a+b \right)}^{3}}={{a}^{2}}.a+2ab.a+{{b}^{2}}.a+{{a}^{2}}.b+2ab.b+{{b}^{2}}.b \\
& {{\left( a+b \right)}^{3}}={{a}^{3}}+2{{a}^{2}}b+a{{b}^{2}}+{{a}^{2}}b+2a{{b}^{2}}+{{b}^{3}} \\
\end{align}\]
\[{{\left( a+b \right)}^{3}}={{a}^{3}}+3{{a}^{2}}b+3a{{b}^{2}}+{{b}^{3}}\] …………………………………….(15)
Simplifying equation (15), we get
\[{{\left( a+b \right)}^{3}}={{a}^{3}}+{{b}^{3}}+3ab\left( a+b \right)\] .
Therefore, the formula for \[{{\left( a+b \right)}^{3}}\] after simplifying it is \[\left\{ {{a}^{3}}+{{b}^{3}}+3ab\left( a+b \right) \right\}\] .
So, \[{{\left( a+b \right)}^{3}}=\left\{ {{a}^{3}}+{{b}^{3}}+3ab\left( a+b \right) \right\}\] ……………………………(16)
In part (iv), we have to simplify the expression,
\[{{\left( a-b \right)}^{3}}\] ……………………………..(17)
We can write \[{{\left( a-b \right)}^{3}}\] as the product of the terms \[{{\left( a-b \right)}^{2}}\] and \[\left( a-b \right)\] .
Now, on transforming equation (17), we get
\[{{\left( a-b \right)}^{3}}={{\left( a-b \right)}^{2}}\times \left( a-b \right)\] ………………………..(18)
We know the formula, \[{{\left( x-y \right)}^{2}}={{x}^{2}}-2xy+{{y}^{2}}\] ………………………….(19)
Using equation (19) and transforming equation (18), we get
\[{{\left( a-b \right)}^{3}}=\left( {{a}^{2}}-2ab+{{b}^{2}} \right)\times \left( a-b \right)\] ………………………………(20)
Now, multiplying the terms \[\left( {{a}^{2}}-2ab+{{b}^{2}} \right)\] and \[\left( a-b \right)\] of equation (20), we get
\[\begin{align}
& {{\left( a-b \right)}^{3}}=\left( {{a}^{2}}-2ab+{{b}^{2}} \right)\times \left( a-b \right) \\
& {{\left( a-b \right)}^{3}}={{a}^{2}}.a-2ab.a+{{b}^{2}}.a-{{a}^{2}}.b+2ab.b-{{b}^{2}}.b \\
& {{\left( a-b \right)}^{3}}={{a}^{3}}-2{{a}^{2}}b+a{{b}^{2}}-{{a}^{2}}b+2a{{b}^{2}}-{{b}^{3}} \\
\end{align}\]
\[{{\left( a-b \right)}^{3}}={{a}^{3}}-3{{a}^{2}}b+3a{{b}^{2}}-{{b}^{3}}\] …………………………………….(21)
Simplifying equation (21), we get
\[{{\left( a-b \right)}^{3}}={{a}^{3}}-{{b}^{3}}-3ab\left( a-b \right)\] .
Therefore, the formula for \[{{\left( a-b \right)}^{3}}\] after simplifying it is \[\left\{ {{a}^{3}}-{{b}^{3}}-3ab\left( a-b \right) \right\}\] .
So, \[{{\left( a-b \right)}^{3}}=\left\{ {{a}^{3}}-{{b}^{3}}-3ab\left( a-b \right) \right\}\] …………………………(23)
Hence, we have got the formulas from equation (5), equation (10), equation (16), and equation (22), we have
\[\left( {{a}^{3}}-{{b}^{3}} \right)=\left( a-b \right)\left( {{a}^{2}}+ab+{{b}^{2}} \right)\] ,
\[\left( {{a}^{3}}+{{b}^{3}} \right)=\left( a+b \right)\left( {{a}^{2}}-ab+{{b}^{2}} \right)\] ,
\[{{\left( a+b \right)}^{3}}=\left\{ {{a}^{3}}+{{b}^{3}}+3ab\left( a+b \right) \right\}\] ,
\[{{\left( a-b \right)}^{3}}=\left\{ {{a}^{3}}-{{b}^{3}}-3ab\left( a-b \right) \right\}\] .
Note: In this question, one might get confused while solving the expressions \[\left( {{a}^{3}}-{{b}^{3}} \right)\] and \[\left( {{a}^{3}}+{{b}^{3}} \right)\] because we don’t have any formulas so that we can use it here and solve these two expressions. The only way to solve these two expressions is to add and subtract the terms \[{{a}^{2}}b\] and \[a{{b}^{2}}\] in the expression \[\left( {{a}^{3}}+{{b}^{3}} \right)\] .
Recently Updated Pages
Master Class 8 Maths: Engaging Questions & Answers for Success

Class 8 Question and Answer - Your Ultimate Solutions Guide

Master Class 7 Maths: Engaging Questions & Answers for Success

Class 7 Question and Answer - Your Ultimate Solutions Guide

Master Class 6 Maths: Engaging Questions & Answers for Success

Class 6 Question and Answer - Your Ultimate Solutions Guide

Trending doubts
The slogan Jai Hind was given by A Lal Bahadur Shastri class 10 social science CBSE

Show that the points 11 52 and 9 5 are collinear-class-10-maths-CBSE

List out three methods of soil conservation

Find the mode of 10 12 11 10 15 20 19 21 11 9 10 class 10 maths CBSE

The curved surface area of a cone of slant height l class 10 maths CBSE

The involuntary action in the body are controlled by class 10 biology CBSE

