
How do you find the exact values of \[\tan {67.5^ \circ }\] using the half angle formula?
Answer
476.1k+ views
Hint: We use the half angle formulas for solving this problem. Using this formula, we can solve many other problems. The formulas are, \[\sin \left( {\dfrac{\theta }{2}} \right) = \pm \sqrt {\dfrac{{1 - \cos \theta }}{2}} \] and \[\cos \left( {\dfrac{\theta }{2}} \right) = \pm \sqrt {\dfrac{{1 + \cos \theta }}{2}} \] . And we will also discuss trigonometric ratios of angles like \[\left( {{{90}^ \circ } \pm \theta } \right)\] in this problem. We will also use some known trigonometric ratios like sine and cosine values of \[{45^ \circ }\] .
Complete step by step answer:
Tangent value is positive in the first quadrant, so, \[\tan {67.5^ \circ }\] is a positive value. So we should get a positive answer.
Firstly, the angle \[{67.5^ \circ }\] is half of the angle \[{135^ \circ }\] .
And, we can write as, \[\tan {67.5^ \circ } = \tan \left( {\dfrac{{{{135}^ \circ }}}{2}} \right)\]
Now, we also know that, \[\sin \left( {\dfrac{\theta }{2}} \right) = \pm \sqrt {\dfrac{{1 - \cos \theta }}{2}} \] and also \[\cos \left( {\dfrac{\theta }{2}} \right) = \pm \sqrt {\dfrac{{1 + \cos \theta }}{2}} \]
So, dividing these both, we get,
\[\dfrac{{\sin \left( {\dfrac{\theta }{2}} \right)}}{{\cos \left( {\dfrac{\theta }{2}} \right)}} = \tan \left( {\dfrac{\theta }{2}} \right) = \pm \sqrt {\dfrac{{1 - \cos \theta }}{{1 + \cos \theta }}} \]
To rationalize the denominator, we multiply both numerator and denominator by its conjugate
(For \[\sqrt {a + b} \] the conjugate is \[\sqrt {a - b} \] )
On rationalizing, we get, \[\tan \left( {\dfrac{\theta }{2}} \right) = \pm \sqrt {\dfrac{{1 - \cos \theta }}{{1 + \cos \theta }}} \dfrac{{\sqrt {1 - \cos \theta } }}{{\sqrt {1 - \cos \theta } }}\]
\[ \Rightarrow \tan \left( {\dfrac{\theta }{2}} \right) = \dfrac{{1 - \cos \theta }}{{\sin \theta }}\]
Here, we get both positive and positive values for this. But for our convenience, we take only positive values.
(Because, \[1 - {\cos ^2}\theta = {\sin ^2}\theta \] )
So, substituting \[\theta = {135^ \circ }\]
\[ \Rightarrow \tan \left( {\dfrac{{{{135}^ \circ }}}{2}} \right) = \dfrac{{1 - \cos {{135}^ \circ }}}{{\sin {{135}^ \circ }}}\]
And, \[{135^ \circ } = {90^ \circ } + {45^ \circ }\]
So, \[\cos {135^ \circ } = \cos ({90^ \circ } + {45^ \circ })\]
\[ \Rightarrow \cos {135^ \circ } = - \sin {45^ \circ }\]
(Because \[\cos ({90^ \circ } + \theta ) = - \sin \theta \] ; as cosine is negative in second quadrant and \[\left( {{{90}^ \circ } + \theta } \right)\] belongs to second quadrant)
So, \[\cos {135^ \circ } = - \dfrac{1}{{\sqrt 2 }}\] (as \[\sin {45^ \circ } = \dfrac{1}{{\sqrt 2 }}\] )
And \[\sin {135^ \circ } = \sin ({90^ \circ } + {45^ \circ }) = \cos {45^ \circ }\]\[ = \dfrac{1}{{\sqrt 2 }}\] (as \[\cos {45^ \circ } = \dfrac{1}{{\sqrt 2 }}\] )
(Because \[\sin ({90^ \circ } + \theta ) = \cos \theta \] ; as sine is positive in second quadrant and \[\left( {{{90}^ \circ } + \theta } \right)\] belongs to second quadrant)
So,
\[ \Rightarrow \tan \left( {\dfrac{{{{135}^ \circ }}}{2}} \right) = \dfrac{{1 - \left( { - \dfrac{1}{{\sqrt 2 }}} \right)}}{{\dfrac{1}{{\sqrt 2 }}}}\]
\[ \Rightarrow \tan \left( {\dfrac{{{{135}^ \circ }}}{2}} \right) = \dfrac{{1 + \dfrac{1}{{\sqrt 2 }}}}{{\dfrac{1}{{\sqrt 2 }}}}\]
So finally, we get, \[\tan \left( {\dfrac{{{{135}^ \circ }}}{2}} \right) = \sqrt 2 + 1\]
\[ \Rightarrow \tan \left( {{{67.5}^ \circ }} \right) = \sqrt 2 + 1\]
We know that the value of \[\sqrt 2 \] is equal to the \[1.414\] .
So, \[\tan ({67.5^ \circ }) = 1.414 + 1 = 2.414\]
And this is the required value.
Note:To rationalize the denominator, we need to multiply both numerator and denominator by its conjugate and here the conjugate is \[\sqrt {1 - \cos \theta } \] . But instead, we can also multiply both numerator and denominator by \[\sqrt {1 + \cos \theta } \] and we can get another value which is also equal to the first.
So, \[\tan \left( {\dfrac{\theta }{2}} \right) = \sqrt {\dfrac{{1 - \cos \theta }}{{1 + \cos \theta }}} \dfrac{{\sqrt {1 + \cos \theta } }}{{\sqrt {1 + \cos \theta } }}\]
So, that implies as \[\tan \left( {\dfrac{\theta }{2}} \right) = \dfrac{{\sin \theta }}{{1 + \cos \theta }}\] .
Complete step by step answer:
Tangent value is positive in the first quadrant, so, \[\tan {67.5^ \circ }\] is a positive value. So we should get a positive answer.
Firstly, the angle \[{67.5^ \circ }\] is half of the angle \[{135^ \circ }\] .
And, we can write as, \[\tan {67.5^ \circ } = \tan \left( {\dfrac{{{{135}^ \circ }}}{2}} \right)\]
Now, we also know that, \[\sin \left( {\dfrac{\theta }{2}} \right) = \pm \sqrt {\dfrac{{1 - \cos \theta }}{2}} \] and also \[\cos \left( {\dfrac{\theta }{2}} \right) = \pm \sqrt {\dfrac{{1 + \cos \theta }}{2}} \]
So, dividing these both, we get,
\[\dfrac{{\sin \left( {\dfrac{\theta }{2}} \right)}}{{\cos \left( {\dfrac{\theta }{2}} \right)}} = \tan \left( {\dfrac{\theta }{2}} \right) = \pm \sqrt {\dfrac{{1 - \cos \theta }}{{1 + \cos \theta }}} \]
To rationalize the denominator, we multiply both numerator and denominator by its conjugate
(For \[\sqrt {a + b} \] the conjugate is \[\sqrt {a - b} \] )
On rationalizing, we get, \[\tan \left( {\dfrac{\theta }{2}} \right) = \pm \sqrt {\dfrac{{1 - \cos \theta }}{{1 + \cos \theta }}} \dfrac{{\sqrt {1 - \cos \theta } }}{{\sqrt {1 - \cos \theta } }}\]
\[ \Rightarrow \tan \left( {\dfrac{\theta }{2}} \right) = \dfrac{{1 - \cos \theta }}{{\sin \theta }}\]
Here, we get both positive and positive values for this. But for our convenience, we take only positive values.
(Because, \[1 - {\cos ^2}\theta = {\sin ^2}\theta \] )
So, substituting \[\theta = {135^ \circ }\]
\[ \Rightarrow \tan \left( {\dfrac{{{{135}^ \circ }}}{2}} \right) = \dfrac{{1 - \cos {{135}^ \circ }}}{{\sin {{135}^ \circ }}}\]
And, \[{135^ \circ } = {90^ \circ } + {45^ \circ }\]
So, \[\cos {135^ \circ } = \cos ({90^ \circ } + {45^ \circ })\]
\[ \Rightarrow \cos {135^ \circ } = - \sin {45^ \circ }\]
(Because \[\cos ({90^ \circ } + \theta ) = - \sin \theta \] ; as cosine is negative in second quadrant and \[\left( {{{90}^ \circ } + \theta } \right)\] belongs to second quadrant)
So, \[\cos {135^ \circ } = - \dfrac{1}{{\sqrt 2 }}\] (as \[\sin {45^ \circ } = \dfrac{1}{{\sqrt 2 }}\] )
And \[\sin {135^ \circ } = \sin ({90^ \circ } + {45^ \circ }) = \cos {45^ \circ }\]\[ = \dfrac{1}{{\sqrt 2 }}\] (as \[\cos {45^ \circ } = \dfrac{1}{{\sqrt 2 }}\] )
(Because \[\sin ({90^ \circ } + \theta ) = \cos \theta \] ; as sine is positive in second quadrant and \[\left( {{{90}^ \circ } + \theta } \right)\] belongs to second quadrant)
So,
\[ \Rightarrow \tan \left( {\dfrac{{{{135}^ \circ }}}{2}} \right) = \dfrac{{1 - \left( { - \dfrac{1}{{\sqrt 2 }}} \right)}}{{\dfrac{1}{{\sqrt 2 }}}}\]
\[ \Rightarrow \tan \left( {\dfrac{{{{135}^ \circ }}}{2}} \right) = \dfrac{{1 + \dfrac{1}{{\sqrt 2 }}}}{{\dfrac{1}{{\sqrt 2 }}}}\]
So finally, we get, \[\tan \left( {\dfrac{{{{135}^ \circ }}}{2}} \right) = \sqrt 2 + 1\]
\[ \Rightarrow \tan \left( {{{67.5}^ \circ }} \right) = \sqrt 2 + 1\]
We know that the value of \[\sqrt 2 \] is equal to the \[1.414\] .
So, \[\tan ({67.5^ \circ }) = 1.414 + 1 = 2.414\]
And this is the required value.
Note:To rationalize the denominator, we need to multiply both numerator and denominator by its conjugate and here the conjugate is \[\sqrt {1 - \cos \theta } \] . But instead, we can also multiply both numerator and denominator by \[\sqrt {1 + \cos \theta } \] and we can get another value which is also equal to the first.
So, \[\tan \left( {\dfrac{\theta }{2}} \right) = \sqrt {\dfrac{{1 - \cos \theta }}{{1 + \cos \theta }}} \dfrac{{\sqrt {1 + \cos \theta } }}{{\sqrt {1 + \cos \theta } }}\]
So, that implies as \[\tan \left( {\dfrac{\theta }{2}} \right) = \dfrac{{\sin \theta }}{{1 + \cos \theta }}\] .
Recently Updated Pages
Why are manures considered better than fertilizers class 11 biology CBSE

Find the coordinates of the midpoint of the line segment class 11 maths CBSE

Distinguish between static friction limiting friction class 11 physics CBSE

The Chairman of the constituent Assembly was A Jawaharlal class 11 social science CBSE

The first National Commission on Labour NCL submitted class 11 social science CBSE

Number of all subshell of n + l 7 is A 4 B 5 C 6 D class 11 chemistry CBSE

Trending doubts
What is meant by exothermic and endothermic reactions class 11 chemistry CBSE

10 examples of friction in our daily life

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

1 Quintal is equal to a 110 kg b 10 kg c 100kg d 1000 class 11 physics CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells

What are Quantum numbers Explain the quantum number class 11 chemistry CBSE

