
How do you find the exact values of \[\tan {67.5^ \circ }\] using the half angle formula?
Answer
489.6k+ views
Hint: We use the half angle formulas for solving this problem. Using this formula, we can solve many other problems. The formulas are, \[\sin \left( {\dfrac{\theta }{2}} \right) = \pm \sqrt {\dfrac{{1 - \cos \theta }}{2}} \] and \[\cos \left( {\dfrac{\theta }{2}} \right) = \pm \sqrt {\dfrac{{1 + \cos \theta }}{2}} \] . And we will also discuss trigonometric ratios of angles like \[\left( {{{90}^ \circ } \pm \theta } \right)\] in this problem. We will also use some known trigonometric ratios like sine and cosine values of \[{45^ \circ }\] .
Complete step by step answer:
Tangent value is positive in the first quadrant, so, \[\tan {67.5^ \circ }\] is a positive value. So we should get a positive answer.
Firstly, the angle \[{67.5^ \circ }\] is half of the angle \[{135^ \circ }\] .
And, we can write as, \[\tan {67.5^ \circ } = \tan \left( {\dfrac{{{{135}^ \circ }}}{2}} \right)\]
Now, we also know that, \[\sin \left( {\dfrac{\theta }{2}} \right) = \pm \sqrt {\dfrac{{1 - \cos \theta }}{2}} \] and also \[\cos \left( {\dfrac{\theta }{2}} \right) = \pm \sqrt {\dfrac{{1 + \cos \theta }}{2}} \]
So, dividing these both, we get,
\[\dfrac{{\sin \left( {\dfrac{\theta }{2}} \right)}}{{\cos \left( {\dfrac{\theta }{2}} \right)}} = \tan \left( {\dfrac{\theta }{2}} \right) = \pm \sqrt {\dfrac{{1 - \cos \theta }}{{1 + \cos \theta }}} \]
To rationalize the denominator, we multiply both numerator and denominator by its conjugate
(For \[\sqrt {a + b} \] the conjugate is \[\sqrt {a - b} \] )
On rationalizing, we get, \[\tan \left( {\dfrac{\theta }{2}} \right) = \pm \sqrt {\dfrac{{1 - \cos \theta }}{{1 + \cos \theta }}} \dfrac{{\sqrt {1 - \cos \theta } }}{{\sqrt {1 - \cos \theta } }}\]
\[ \Rightarrow \tan \left( {\dfrac{\theta }{2}} \right) = \dfrac{{1 - \cos \theta }}{{\sin \theta }}\]
Here, we get both positive and positive values for this. But for our convenience, we take only positive values.
(Because, \[1 - {\cos ^2}\theta = {\sin ^2}\theta \] )
So, substituting \[\theta = {135^ \circ }\]
\[ \Rightarrow \tan \left( {\dfrac{{{{135}^ \circ }}}{2}} \right) = \dfrac{{1 - \cos {{135}^ \circ }}}{{\sin {{135}^ \circ }}}\]
And, \[{135^ \circ } = {90^ \circ } + {45^ \circ }\]
So, \[\cos {135^ \circ } = \cos ({90^ \circ } + {45^ \circ })\]
\[ \Rightarrow \cos {135^ \circ } = - \sin {45^ \circ }\]
(Because \[\cos ({90^ \circ } + \theta ) = - \sin \theta \] ; as cosine is negative in second quadrant and \[\left( {{{90}^ \circ } + \theta } \right)\] belongs to second quadrant)
So, \[\cos {135^ \circ } = - \dfrac{1}{{\sqrt 2 }}\] (as \[\sin {45^ \circ } = \dfrac{1}{{\sqrt 2 }}\] )
And \[\sin {135^ \circ } = \sin ({90^ \circ } + {45^ \circ }) = \cos {45^ \circ }\]\[ = \dfrac{1}{{\sqrt 2 }}\] (as \[\cos {45^ \circ } = \dfrac{1}{{\sqrt 2 }}\] )
(Because \[\sin ({90^ \circ } + \theta ) = \cos \theta \] ; as sine is positive in second quadrant and \[\left( {{{90}^ \circ } + \theta } \right)\] belongs to second quadrant)
So,
\[ \Rightarrow \tan \left( {\dfrac{{{{135}^ \circ }}}{2}} \right) = \dfrac{{1 - \left( { - \dfrac{1}{{\sqrt 2 }}} \right)}}{{\dfrac{1}{{\sqrt 2 }}}}\]
\[ \Rightarrow \tan \left( {\dfrac{{{{135}^ \circ }}}{2}} \right) = \dfrac{{1 + \dfrac{1}{{\sqrt 2 }}}}{{\dfrac{1}{{\sqrt 2 }}}}\]
So finally, we get, \[\tan \left( {\dfrac{{{{135}^ \circ }}}{2}} \right) = \sqrt 2 + 1\]
\[ \Rightarrow \tan \left( {{{67.5}^ \circ }} \right) = \sqrt 2 + 1\]
We know that the value of \[\sqrt 2 \] is equal to the \[1.414\] .
So, \[\tan ({67.5^ \circ }) = 1.414 + 1 = 2.414\]
And this is the required value.
Note:To rationalize the denominator, we need to multiply both numerator and denominator by its conjugate and here the conjugate is \[\sqrt {1 - \cos \theta } \] . But instead, we can also multiply both numerator and denominator by \[\sqrt {1 + \cos \theta } \] and we can get another value which is also equal to the first.
So, \[\tan \left( {\dfrac{\theta }{2}} \right) = \sqrt {\dfrac{{1 - \cos \theta }}{{1 + \cos \theta }}} \dfrac{{\sqrt {1 + \cos \theta } }}{{\sqrt {1 + \cos \theta } }}\]
So, that implies as \[\tan \left( {\dfrac{\theta }{2}} \right) = \dfrac{{\sin \theta }}{{1 + \cos \theta }}\] .
Complete step by step answer:
Tangent value is positive in the first quadrant, so, \[\tan {67.5^ \circ }\] is a positive value. So we should get a positive answer.
Firstly, the angle \[{67.5^ \circ }\] is half of the angle \[{135^ \circ }\] .
And, we can write as, \[\tan {67.5^ \circ } = \tan \left( {\dfrac{{{{135}^ \circ }}}{2}} \right)\]
Now, we also know that, \[\sin \left( {\dfrac{\theta }{2}} \right) = \pm \sqrt {\dfrac{{1 - \cos \theta }}{2}} \] and also \[\cos \left( {\dfrac{\theta }{2}} \right) = \pm \sqrt {\dfrac{{1 + \cos \theta }}{2}} \]
So, dividing these both, we get,
\[\dfrac{{\sin \left( {\dfrac{\theta }{2}} \right)}}{{\cos \left( {\dfrac{\theta }{2}} \right)}} = \tan \left( {\dfrac{\theta }{2}} \right) = \pm \sqrt {\dfrac{{1 - \cos \theta }}{{1 + \cos \theta }}} \]
To rationalize the denominator, we multiply both numerator and denominator by its conjugate
(For \[\sqrt {a + b} \] the conjugate is \[\sqrt {a - b} \] )
On rationalizing, we get, \[\tan \left( {\dfrac{\theta }{2}} \right) = \pm \sqrt {\dfrac{{1 - \cos \theta }}{{1 + \cos \theta }}} \dfrac{{\sqrt {1 - \cos \theta } }}{{\sqrt {1 - \cos \theta } }}\]
\[ \Rightarrow \tan \left( {\dfrac{\theta }{2}} \right) = \dfrac{{1 - \cos \theta }}{{\sin \theta }}\]
Here, we get both positive and positive values for this. But for our convenience, we take only positive values.
(Because, \[1 - {\cos ^2}\theta = {\sin ^2}\theta \] )
So, substituting \[\theta = {135^ \circ }\]
\[ \Rightarrow \tan \left( {\dfrac{{{{135}^ \circ }}}{2}} \right) = \dfrac{{1 - \cos {{135}^ \circ }}}{{\sin {{135}^ \circ }}}\]
And, \[{135^ \circ } = {90^ \circ } + {45^ \circ }\]
So, \[\cos {135^ \circ } = \cos ({90^ \circ } + {45^ \circ })\]
\[ \Rightarrow \cos {135^ \circ } = - \sin {45^ \circ }\]
(Because \[\cos ({90^ \circ } + \theta ) = - \sin \theta \] ; as cosine is negative in second quadrant and \[\left( {{{90}^ \circ } + \theta } \right)\] belongs to second quadrant)
So, \[\cos {135^ \circ } = - \dfrac{1}{{\sqrt 2 }}\] (as \[\sin {45^ \circ } = \dfrac{1}{{\sqrt 2 }}\] )
And \[\sin {135^ \circ } = \sin ({90^ \circ } + {45^ \circ }) = \cos {45^ \circ }\]\[ = \dfrac{1}{{\sqrt 2 }}\] (as \[\cos {45^ \circ } = \dfrac{1}{{\sqrt 2 }}\] )
(Because \[\sin ({90^ \circ } + \theta ) = \cos \theta \] ; as sine is positive in second quadrant and \[\left( {{{90}^ \circ } + \theta } \right)\] belongs to second quadrant)
So,
\[ \Rightarrow \tan \left( {\dfrac{{{{135}^ \circ }}}{2}} \right) = \dfrac{{1 - \left( { - \dfrac{1}{{\sqrt 2 }}} \right)}}{{\dfrac{1}{{\sqrt 2 }}}}\]
\[ \Rightarrow \tan \left( {\dfrac{{{{135}^ \circ }}}{2}} \right) = \dfrac{{1 + \dfrac{1}{{\sqrt 2 }}}}{{\dfrac{1}{{\sqrt 2 }}}}\]
So finally, we get, \[\tan \left( {\dfrac{{{{135}^ \circ }}}{2}} \right) = \sqrt 2 + 1\]
\[ \Rightarrow \tan \left( {{{67.5}^ \circ }} \right) = \sqrt 2 + 1\]
We know that the value of \[\sqrt 2 \] is equal to the \[1.414\] .
So, \[\tan ({67.5^ \circ }) = 1.414 + 1 = 2.414\]
And this is the required value.
Note:To rationalize the denominator, we need to multiply both numerator and denominator by its conjugate and here the conjugate is \[\sqrt {1 - \cos \theta } \] . But instead, we can also multiply both numerator and denominator by \[\sqrt {1 + \cos \theta } \] and we can get another value which is also equal to the first.
So, \[\tan \left( {\dfrac{\theta }{2}} \right) = \sqrt {\dfrac{{1 - \cos \theta }}{{1 + \cos \theta }}} \dfrac{{\sqrt {1 + \cos \theta } }}{{\sqrt {1 + \cos \theta } }}\]
So, that implies as \[\tan \left( {\dfrac{\theta }{2}} \right) = \dfrac{{\sin \theta }}{{1 + \cos \theta }}\] .
Recently Updated Pages
Master Class 11 Computer Science: Engaging Questions & Answers for Success

Master Class 11 Business Studies: Engaging Questions & Answers for Success

Master Class 11 Economics: Engaging Questions & Answers for Success

Master Class 11 English: Engaging Questions & Answers for Success

Master Class 11 Maths: Engaging Questions & Answers for Success

Master Class 11 Biology: Engaging Questions & Answers for Success

Trending doubts
There are 720 permutations of the digits 1 2 3 4 5 class 11 maths CBSE

Discuss the various forms of bacteria class 11 biology CBSE

Explain zero factorial class 11 maths CBSE

What organs are located on the left side of your body class 11 biology CBSE

Draw a diagram of nephron and explain its structur class 11 biology CBSE

How do I convert ms to kmh Give an example class 11 physics CBSE

