
How do you find the exact value of $ \cos \left( \text{arcsin}\left( -\dfrac{1}{4} \right) \right) $ ?
Answer
545.1k+ views
Hint: In the problem we need to calculate the exact value of $ \cos \left( \text{arcsin}\left( -\dfrac{1}{4} \right) \right) $ . In the given problem the term $ \text{arcsin}\theta $ means $ {{\sin }^{-1}}\theta $ . So first we will assume the value which in the inverse trigonometric function as a variable let’s say $ x $ . Now we will calculate the value of $ \sin x $ by applying the trigonometric function $ \sin $ on both sides of the above equation. After getting the value of $ \sin x $ we will use the trigonometric identity $ {{\sin }^{2}}x+{{\cos }^{2}}x=1 $ to calculate the value of $ \cos x $ which is our required value.
Complete step by step answer:
Given that, $ \cos \left( \text{arcsin}\left( -\dfrac{1}{4} \right) \right) $ .
In the above equation the term $ \text{arcsin}\left( -\dfrac{1}{4} \right) $ can be written as $ {{\sin }^{-1}}\left( -\dfrac{1}{4} \right) $ .
Assuming that the value of $ {{\sin }^{-1}}\left( -\dfrac{1}{4} \right) $ to a variable $ x $ , then we will get
$ {{\sin }^{-1}}\left( -\dfrac{1}{4} \right)=x $
Applying the $ \sin $ trigonometric function on both sides of the above equation, then we will get
$ \sin \left( {{\sin }^{-1}}\left( -\dfrac{1}{4} \right) \right)=\sin x $
We know that the multiplication of a function with its inverse function will give the unity as a result, then the above equation is modified as
$ \Rightarrow \sin x=-\dfrac{1}{4} $
From the trigonometric identity $ {{\sin }^{2}}x+{{\cos }^{2}}x=1 $ , the value of $ \cos x $ can be calculated as below
$ \cos x=\sqrt{1-{{\sin }^{2}}x} $
Substituting the value of $ \sin x=-\dfrac{1}{4} $ in the above equation, then we will get
$ \Rightarrow \cos x=\sqrt{1-{{\left( -\dfrac{1}{4} \right)}^{2}}} $
Simplifying the above equation, then we will have
$ \begin{align}
& \Rightarrow \cos x=\sqrt{1-\dfrac{1}{16}} \\
& \Rightarrow \cos x=\sqrt{\dfrac{16-1}{16}} \\
& \Rightarrow \cos x=\dfrac{\sqrt{15}}{4} \\
& \Rightarrow \cos x\simeq 0.968 \\
\end{align} $
Hence the value of $ \cos \left( \text{arcsin}\left( -\dfrac{1}{4} \right) \right) $ is nearly $ 0.968 $ .
Note:
We can also directly use the trigonometric identity $ {{\sin }^{2}}x+{{\cos }^{2}}x=1 $ to solve the above problem without calculating the value of $ \sin x $ .
Given that $ \cos \left( \text{arcsin}\left( -\dfrac{1}{4} \right) \right) $ .
From the trigonometric identity $ {{\sin }^{2}}x+{{\cos }^{2}}x=1 $ , we can write
$ {{\cos }^{2}}\left( \text{arcsin}\left( -\dfrac{1}{4} \right) \right)+{{\sin }^{2}}\left( \text{arcsin}\left( -\dfrac{1}{4} \right) \right)=1 $
We can write $ \text{arcsin}\left( -\dfrac{1}{4} \right) $ as $ {{\sin }^{-1}}\left( -\dfrac{1}{4} \right) $ , then the above equation is modified as
$ \begin{align}
& {{\cos }^{2}}\left( {{\sin }^{-1}}\left( -\dfrac{1}{4} \right) \right)+{{\sin }^{2}}\left( {{\sin }^{-1}}\left( -\dfrac{1}{4} \right) \right)=1 \\
& \Rightarrow {{\cos }^{2}}\left( {{\sin }^{-1}}\left( -\dfrac{1}{4} \right) \right)=1-{{\left( -\dfrac{1}{4} \right)}^{2}} \\
& \Rightarrow \cos \left( {{\sin }^{-1}}\left( -\dfrac{1}{4} \right) \right)=\sqrt{1-\dfrac{1}{16}} \\
& \Rightarrow \cos \left( {{\sin }^{-1}}\left( -\dfrac{1}{4} \right) \right)=\dfrac{\sqrt{15}}{4} \\
& \Rightarrow \cos \left( {{\sin }^{-1}}\left( -\dfrac{1}{4} \right) \right)\simeq 0.968 \\
\end{align} $
From both the methods we got the same result.
Complete step by step answer:
Given that, $ \cos \left( \text{arcsin}\left( -\dfrac{1}{4} \right) \right) $ .
In the above equation the term $ \text{arcsin}\left( -\dfrac{1}{4} \right) $ can be written as $ {{\sin }^{-1}}\left( -\dfrac{1}{4} \right) $ .
Assuming that the value of $ {{\sin }^{-1}}\left( -\dfrac{1}{4} \right) $ to a variable $ x $ , then we will get
$ {{\sin }^{-1}}\left( -\dfrac{1}{4} \right)=x $
Applying the $ \sin $ trigonometric function on both sides of the above equation, then we will get
$ \sin \left( {{\sin }^{-1}}\left( -\dfrac{1}{4} \right) \right)=\sin x $
We know that the multiplication of a function with its inverse function will give the unity as a result, then the above equation is modified as
$ \Rightarrow \sin x=-\dfrac{1}{4} $
From the trigonometric identity $ {{\sin }^{2}}x+{{\cos }^{2}}x=1 $ , the value of $ \cos x $ can be calculated as below
$ \cos x=\sqrt{1-{{\sin }^{2}}x} $
Substituting the value of $ \sin x=-\dfrac{1}{4} $ in the above equation, then we will get
$ \Rightarrow \cos x=\sqrt{1-{{\left( -\dfrac{1}{4} \right)}^{2}}} $
Simplifying the above equation, then we will have
$ \begin{align}
& \Rightarrow \cos x=\sqrt{1-\dfrac{1}{16}} \\
& \Rightarrow \cos x=\sqrt{\dfrac{16-1}{16}} \\
& \Rightarrow \cos x=\dfrac{\sqrt{15}}{4} \\
& \Rightarrow \cos x\simeq 0.968 \\
\end{align} $
Hence the value of $ \cos \left( \text{arcsin}\left( -\dfrac{1}{4} \right) \right) $ is nearly $ 0.968 $ .
Note:
We can also directly use the trigonometric identity $ {{\sin }^{2}}x+{{\cos }^{2}}x=1 $ to solve the above problem without calculating the value of $ \sin x $ .
Given that $ \cos \left( \text{arcsin}\left( -\dfrac{1}{4} \right) \right) $ .
From the trigonometric identity $ {{\sin }^{2}}x+{{\cos }^{2}}x=1 $ , we can write
$ {{\cos }^{2}}\left( \text{arcsin}\left( -\dfrac{1}{4} \right) \right)+{{\sin }^{2}}\left( \text{arcsin}\left( -\dfrac{1}{4} \right) \right)=1 $
We can write $ \text{arcsin}\left( -\dfrac{1}{4} \right) $ as $ {{\sin }^{-1}}\left( -\dfrac{1}{4} \right) $ , then the above equation is modified as
$ \begin{align}
& {{\cos }^{2}}\left( {{\sin }^{-1}}\left( -\dfrac{1}{4} \right) \right)+{{\sin }^{2}}\left( {{\sin }^{-1}}\left( -\dfrac{1}{4} \right) \right)=1 \\
& \Rightarrow {{\cos }^{2}}\left( {{\sin }^{-1}}\left( -\dfrac{1}{4} \right) \right)=1-{{\left( -\dfrac{1}{4} \right)}^{2}} \\
& \Rightarrow \cos \left( {{\sin }^{-1}}\left( -\dfrac{1}{4} \right) \right)=\sqrt{1-\dfrac{1}{16}} \\
& \Rightarrow \cos \left( {{\sin }^{-1}}\left( -\dfrac{1}{4} \right) \right)=\dfrac{\sqrt{15}}{4} \\
& \Rightarrow \cos \left( {{\sin }^{-1}}\left( -\dfrac{1}{4} \right) \right)\simeq 0.968 \\
\end{align} $
From both the methods we got the same result.
Recently Updated Pages
Two men on either side of the cliff 90m height observe class 10 maths CBSE

What happens to glucose which enters nephron along class 10 biology CBSE

Cutting of the Chinese melon means A The business and class 10 social science CBSE

Write a dialogue with at least ten utterances between class 10 english CBSE

Show an aquatic food chain using the following organisms class 10 biology CBSE

A circle is inscribed in an equilateral triangle and class 10 maths CBSE

Trending doubts
Why is there a time difference of about 5 hours between class 10 social science CBSE

Write a letter to the principal requesting him to grant class 10 english CBSE

What is the median of the first 10 natural numbers class 10 maths CBSE

The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths

Which of the following does not have a fundamental class 10 physics CBSE

State and prove converse of BPT Basic Proportionality class 10 maths CBSE

