
How do you find the exact value of $ \cos \left( \text{arcsin}\left( -\dfrac{1}{4} \right) \right) $ ?
Answer
559.5k+ views
Hint: In the problem we need to calculate the exact value of $ \cos \left( \text{arcsin}\left( -\dfrac{1}{4} \right) \right) $ . In the given problem the term $ \text{arcsin}\theta $ means $ {{\sin }^{-1}}\theta $ . So first we will assume the value which in the inverse trigonometric function as a variable let’s say $ x $ . Now we will calculate the value of $ \sin x $ by applying the trigonometric function $ \sin $ on both sides of the above equation. After getting the value of $ \sin x $ we will use the trigonometric identity $ {{\sin }^{2}}x+{{\cos }^{2}}x=1 $ to calculate the value of $ \cos x $ which is our required value.
Complete step by step answer:
Given that, $ \cos \left( \text{arcsin}\left( -\dfrac{1}{4} \right) \right) $ .
In the above equation the term $ \text{arcsin}\left( -\dfrac{1}{4} \right) $ can be written as $ {{\sin }^{-1}}\left( -\dfrac{1}{4} \right) $ .
Assuming that the value of $ {{\sin }^{-1}}\left( -\dfrac{1}{4} \right) $ to a variable $ x $ , then we will get
$ {{\sin }^{-1}}\left( -\dfrac{1}{4} \right)=x $
Applying the $ \sin $ trigonometric function on both sides of the above equation, then we will get
$ \sin \left( {{\sin }^{-1}}\left( -\dfrac{1}{4} \right) \right)=\sin x $
We know that the multiplication of a function with its inverse function will give the unity as a result, then the above equation is modified as
$ \Rightarrow \sin x=-\dfrac{1}{4} $
From the trigonometric identity $ {{\sin }^{2}}x+{{\cos }^{2}}x=1 $ , the value of $ \cos x $ can be calculated as below
$ \cos x=\sqrt{1-{{\sin }^{2}}x} $
Substituting the value of $ \sin x=-\dfrac{1}{4} $ in the above equation, then we will get
$ \Rightarrow \cos x=\sqrt{1-{{\left( -\dfrac{1}{4} \right)}^{2}}} $
Simplifying the above equation, then we will have
$ \begin{align}
& \Rightarrow \cos x=\sqrt{1-\dfrac{1}{16}} \\
& \Rightarrow \cos x=\sqrt{\dfrac{16-1}{16}} \\
& \Rightarrow \cos x=\dfrac{\sqrt{15}}{4} \\
& \Rightarrow \cos x\simeq 0.968 \\
\end{align} $
Hence the value of $ \cos \left( \text{arcsin}\left( -\dfrac{1}{4} \right) \right) $ is nearly $ 0.968 $ .
Note:
We can also directly use the trigonometric identity $ {{\sin }^{2}}x+{{\cos }^{2}}x=1 $ to solve the above problem without calculating the value of $ \sin x $ .
Given that $ \cos \left( \text{arcsin}\left( -\dfrac{1}{4} \right) \right) $ .
From the trigonometric identity $ {{\sin }^{2}}x+{{\cos }^{2}}x=1 $ , we can write
$ {{\cos }^{2}}\left( \text{arcsin}\left( -\dfrac{1}{4} \right) \right)+{{\sin }^{2}}\left( \text{arcsin}\left( -\dfrac{1}{4} \right) \right)=1 $
We can write $ \text{arcsin}\left( -\dfrac{1}{4} \right) $ as $ {{\sin }^{-1}}\left( -\dfrac{1}{4} \right) $ , then the above equation is modified as
$ \begin{align}
& {{\cos }^{2}}\left( {{\sin }^{-1}}\left( -\dfrac{1}{4} \right) \right)+{{\sin }^{2}}\left( {{\sin }^{-1}}\left( -\dfrac{1}{4} \right) \right)=1 \\
& \Rightarrow {{\cos }^{2}}\left( {{\sin }^{-1}}\left( -\dfrac{1}{4} \right) \right)=1-{{\left( -\dfrac{1}{4} \right)}^{2}} \\
& \Rightarrow \cos \left( {{\sin }^{-1}}\left( -\dfrac{1}{4} \right) \right)=\sqrt{1-\dfrac{1}{16}} \\
& \Rightarrow \cos \left( {{\sin }^{-1}}\left( -\dfrac{1}{4} \right) \right)=\dfrac{\sqrt{15}}{4} \\
& \Rightarrow \cos \left( {{\sin }^{-1}}\left( -\dfrac{1}{4} \right) \right)\simeq 0.968 \\
\end{align} $
From both the methods we got the same result.
Complete step by step answer:
Given that, $ \cos \left( \text{arcsin}\left( -\dfrac{1}{4} \right) \right) $ .
In the above equation the term $ \text{arcsin}\left( -\dfrac{1}{4} \right) $ can be written as $ {{\sin }^{-1}}\left( -\dfrac{1}{4} \right) $ .
Assuming that the value of $ {{\sin }^{-1}}\left( -\dfrac{1}{4} \right) $ to a variable $ x $ , then we will get
$ {{\sin }^{-1}}\left( -\dfrac{1}{4} \right)=x $
Applying the $ \sin $ trigonometric function on both sides of the above equation, then we will get
$ \sin \left( {{\sin }^{-1}}\left( -\dfrac{1}{4} \right) \right)=\sin x $
We know that the multiplication of a function with its inverse function will give the unity as a result, then the above equation is modified as
$ \Rightarrow \sin x=-\dfrac{1}{4} $
From the trigonometric identity $ {{\sin }^{2}}x+{{\cos }^{2}}x=1 $ , the value of $ \cos x $ can be calculated as below
$ \cos x=\sqrt{1-{{\sin }^{2}}x} $
Substituting the value of $ \sin x=-\dfrac{1}{4} $ in the above equation, then we will get
$ \Rightarrow \cos x=\sqrt{1-{{\left( -\dfrac{1}{4} \right)}^{2}}} $
Simplifying the above equation, then we will have
$ \begin{align}
& \Rightarrow \cos x=\sqrt{1-\dfrac{1}{16}} \\
& \Rightarrow \cos x=\sqrt{\dfrac{16-1}{16}} \\
& \Rightarrow \cos x=\dfrac{\sqrt{15}}{4} \\
& \Rightarrow \cos x\simeq 0.968 \\
\end{align} $
Hence the value of $ \cos \left( \text{arcsin}\left( -\dfrac{1}{4} \right) \right) $ is nearly $ 0.968 $ .
Note:
We can also directly use the trigonometric identity $ {{\sin }^{2}}x+{{\cos }^{2}}x=1 $ to solve the above problem without calculating the value of $ \sin x $ .
Given that $ \cos \left( \text{arcsin}\left( -\dfrac{1}{4} \right) \right) $ .
From the trigonometric identity $ {{\sin }^{2}}x+{{\cos }^{2}}x=1 $ , we can write
$ {{\cos }^{2}}\left( \text{arcsin}\left( -\dfrac{1}{4} \right) \right)+{{\sin }^{2}}\left( \text{arcsin}\left( -\dfrac{1}{4} \right) \right)=1 $
We can write $ \text{arcsin}\left( -\dfrac{1}{4} \right) $ as $ {{\sin }^{-1}}\left( -\dfrac{1}{4} \right) $ , then the above equation is modified as
$ \begin{align}
& {{\cos }^{2}}\left( {{\sin }^{-1}}\left( -\dfrac{1}{4} \right) \right)+{{\sin }^{2}}\left( {{\sin }^{-1}}\left( -\dfrac{1}{4} \right) \right)=1 \\
& \Rightarrow {{\cos }^{2}}\left( {{\sin }^{-1}}\left( -\dfrac{1}{4} \right) \right)=1-{{\left( -\dfrac{1}{4} \right)}^{2}} \\
& \Rightarrow \cos \left( {{\sin }^{-1}}\left( -\dfrac{1}{4} \right) \right)=\sqrt{1-\dfrac{1}{16}} \\
& \Rightarrow \cos \left( {{\sin }^{-1}}\left( -\dfrac{1}{4} \right) \right)=\dfrac{\sqrt{15}}{4} \\
& \Rightarrow \cos \left( {{\sin }^{-1}}\left( -\dfrac{1}{4} \right) \right)\simeq 0.968 \\
\end{align} $
From both the methods we got the same result.
Recently Updated Pages
Master Class 10 Computer Science: Engaging Questions & Answers for Success

Master Class 10 General Knowledge: Engaging Questions & Answers for Success

Master Class 10 English: Engaging Questions & Answers for Success

Master Class 10 Social Science: Engaging Questions & Answers for Success

Master Class 10 Maths: Engaging Questions & Answers for Success

Master Class 10 Science: Engaging Questions & Answers for Success

Trending doubts
What is the median of the first 10 natural numbers class 10 maths CBSE

The draft of the Preamble of the Indian Constitution class 10 social science CBSE

Which women's tennis player has 24 Grand Slam singles titles?

Who gave "Inqilab Zindabad" slogan?

Why is there a time difference of about 5 hours between class 10 social science CBSE

Who is the Brand Ambassador of Incredible India?

