
How would you find the exact trigonometric ratio for an angle whose radian measure is \[\dfrac{4\pi }{3}\]?
Answer
561.9k+ views
Hint: To find the trigonometric ratios, we will use the following properties. \[\sin (\pi +x)=-\sin x\], \[\cos (\pi +x)=-\cos x\]and \[\tan (\pi +x)=\tan x\]where x is an angle measured in radian. We should also know that \[\csc x=\dfrac{1}{\sin x}\], \[\sec x=\dfrac{1}{\cos x}\]and \[\cot x=\dfrac{1}{\tan x}\].
Complete step by step answer:
We are given an angle of radian measure \[\dfrac{4\pi }{3}\], and we have to find the value of the trigonometric ratios, that is the value of\[\sin \left( \dfrac{4\pi }{3} \right),\cos \left( \dfrac{4\pi }{3} \right),\tan \left( \dfrac{4\pi }{3} \right),\csc \left( \dfrac{4\pi }{3} \right),\sec \left( \dfrac{4\pi }{3} \right)\And \cot \left( \dfrac{4\pi }{3} \right)\]. As the measure of the angle is \[\dfrac{4\pi }{3}\], it is a third quadrant angle. The angles in the third quadrant are of form \[\pi +x\] where\[0\le x\le \dfrac{\pi }{2}\]we can find the value of x by comparing this with \[\dfrac{4\pi }{3}\]
\[\Rightarrow \pi +x=\dfrac{4\pi }{3}\]
Subtracting \[\pi \]from both sides of the above equation, we get
\[\Rightarrow \pi +x-\pi =\dfrac{4\pi }{3}-\pi \]
\[\Rightarrow x=\dfrac{\pi }{3}\]
We also know the trigonometric identities which states that \[\sin (\pi +x)=-\sin x\], \[\cos (\pi +x)=-\cos x\]and \[\tan (\pi +x)=\tan x\]. Here we have \[x=\dfrac{\pi }{3}\].
Using the above relations and values, we can find the value of \[\sin \left( \dfrac{4\pi }{3} \right),\cos \left( \dfrac{4\pi }{3} \right)\]and \[\tan \left( \dfrac{4\pi }{3} \right)\] as follows,
\[\begin{align}
& \Rightarrow \sin \left( \dfrac{4\pi }{3} \right)=\sin \left( \pi +\dfrac{\pi }{3} \right)=-\sin \left( \dfrac{\pi }{3} \right)=-\dfrac{\sqrt{3}}{2} \\
& \Rightarrow \cos \left( \dfrac{4\pi }{3} \right)=\cos \left( \pi +\dfrac{\pi }{3} \right)=-\cos \left( \dfrac{\pi }{3} \right)=-\dfrac{1}{2} \\
& \Rightarrow \tan \left( \dfrac{4\pi }{3} \right)=\sin \left( \pi +\dfrac{\pi }{3} \right)=-\sin \left( \dfrac{\pi }{3} \right)=\sqrt{3} \\
\end{align}\]
We also know that the relation between trigonometric ratios which states that, \[\csc x=\dfrac{1}{\sin x},\sec x=\dfrac{1}{\cos x}\]and \[\cot x=\dfrac{1}{\tan x}\]. Using these relations and the values, we can find the other trigonometric ratios as follows,
\[\begin{align}
& \Rightarrow \csc \left( \dfrac{4\pi }{3} \right)=\dfrac{1}{\sin \left( \dfrac{4\pi }{3} \right)}=\dfrac{1}{-\dfrac{\sqrt{3}}{2}}=\dfrac{-2}{\sqrt{3}} \\
& \Rightarrow \sec \left( \dfrac{4\pi }{3} \right)=\dfrac{1}{\cos \left( \dfrac{4\pi }{3} \right)}=\dfrac{1}{-\dfrac{1}{2}}=-2 \\
& \Rightarrow \cot \left( \dfrac{4\pi }{3} \right)=\dfrac{1}{\tan \left( \dfrac{4\pi }{3} \right)}=\dfrac{1}{\sqrt{3}} \\
\end{align}\]
Hence the values of the trigonometric ratios are \[\sin \left( \dfrac{4\pi }{3} \right)=-\dfrac{\sqrt{3}}{2}\], \[\cos \left( \dfrac{4\pi }{3} \right)=-\dfrac{1}{2}\], \[\tan \left( \dfrac{4\pi }{3} \right)=\sqrt{3}\], \[\csc \left( \dfrac{4\pi }{3} \right)=\dfrac{-2}{\sqrt{3}}\], \[\sec \left( \dfrac{4\pi }{3} \right)=-2\]and \[\cot \left( \dfrac{4\pi }{3} \right)=\dfrac{1}{\sqrt{3}}\]for the angle of radian measure \[\dfrac{4\pi }{3}\].
Note:
These types of problems are can be easily solved by remembering basic trigonometric identifies like \[T\left( \dfrac{\pi }{2}\pm x \right)\], \[T\left( \pi \pm x \right)\], \[T\left( \dfrac{3\pi }{2}\pm x \right)\] and \[T\left( 2\pi \pm x \right)\]where T represents one if the trigonometric ratio. One should also remember that, which trigonometric ratios are positive in a particular quadrant.
Complete step by step answer:
We are given an angle of radian measure \[\dfrac{4\pi }{3}\], and we have to find the value of the trigonometric ratios, that is the value of\[\sin \left( \dfrac{4\pi }{3} \right),\cos \left( \dfrac{4\pi }{3} \right),\tan \left( \dfrac{4\pi }{3} \right),\csc \left( \dfrac{4\pi }{3} \right),\sec \left( \dfrac{4\pi }{3} \right)\And \cot \left( \dfrac{4\pi }{3} \right)\]. As the measure of the angle is \[\dfrac{4\pi }{3}\], it is a third quadrant angle. The angles in the third quadrant are of form \[\pi +x\] where\[0\le x\le \dfrac{\pi }{2}\]we can find the value of x by comparing this with \[\dfrac{4\pi }{3}\]
\[\Rightarrow \pi +x=\dfrac{4\pi }{3}\]
Subtracting \[\pi \]from both sides of the above equation, we get
\[\Rightarrow \pi +x-\pi =\dfrac{4\pi }{3}-\pi \]
\[\Rightarrow x=\dfrac{\pi }{3}\]
We also know the trigonometric identities which states that \[\sin (\pi +x)=-\sin x\], \[\cos (\pi +x)=-\cos x\]and \[\tan (\pi +x)=\tan x\]. Here we have \[x=\dfrac{\pi }{3}\].
Using the above relations and values, we can find the value of \[\sin \left( \dfrac{4\pi }{3} \right),\cos \left( \dfrac{4\pi }{3} \right)\]and \[\tan \left( \dfrac{4\pi }{3} \right)\] as follows,
\[\begin{align}
& \Rightarrow \sin \left( \dfrac{4\pi }{3} \right)=\sin \left( \pi +\dfrac{\pi }{3} \right)=-\sin \left( \dfrac{\pi }{3} \right)=-\dfrac{\sqrt{3}}{2} \\
& \Rightarrow \cos \left( \dfrac{4\pi }{3} \right)=\cos \left( \pi +\dfrac{\pi }{3} \right)=-\cos \left( \dfrac{\pi }{3} \right)=-\dfrac{1}{2} \\
& \Rightarrow \tan \left( \dfrac{4\pi }{3} \right)=\sin \left( \pi +\dfrac{\pi }{3} \right)=-\sin \left( \dfrac{\pi }{3} \right)=\sqrt{3} \\
\end{align}\]
We also know that the relation between trigonometric ratios which states that, \[\csc x=\dfrac{1}{\sin x},\sec x=\dfrac{1}{\cos x}\]and \[\cot x=\dfrac{1}{\tan x}\]. Using these relations and the values, we can find the other trigonometric ratios as follows,
\[\begin{align}
& \Rightarrow \csc \left( \dfrac{4\pi }{3} \right)=\dfrac{1}{\sin \left( \dfrac{4\pi }{3} \right)}=\dfrac{1}{-\dfrac{\sqrt{3}}{2}}=\dfrac{-2}{\sqrt{3}} \\
& \Rightarrow \sec \left( \dfrac{4\pi }{3} \right)=\dfrac{1}{\cos \left( \dfrac{4\pi }{3} \right)}=\dfrac{1}{-\dfrac{1}{2}}=-2 \\
& \Rightarrow \cot \left( \dfrac{4\pi }{3} \right)=\dfrac{1}{\tan \left( \dfrac{4\pi }{3} \right)}=\dfrac{1}{\sqrt{3}} \\
\end{align}\]
Hence the values of the trigonometric ratios are \[\sin \left( \dfrac{4\pi }{3} \right)=-\dfrac{\sqrt{3}}{2}\], \[\cos \left( \dfrac{4\pi }{3} \right)=-\dfrac{1}{2}\], \[\tan \left( \dfrac{4\pi }{3} \right)=\sqrt{3}\], \[\csc \left( \dfrac{4\pi }{3} \right)=\dfrac{-2}{\sqrt{3}}\], \[\sec \left( \dfrac{4\pi }{3} \right)=-2\]and \[\cot \left( \dfrac{4\pi }{3} \right)=\dfrac{1}{\sqrt{3}}\]for the angle of radian measure \[\dfrac{4\pi }{3}\].
Note:
These types of problems are can be easily solved by remembering basic trigonometric identifies like \[T\left( \dfrac{\pi }{2}\pm x \right)\], \[T\left( \pi \pm x \right)\], \[T\left( \dfrac{3\pi }{2}\pm x \right)\] and \[T\left( 2\pi \pm x \right)\]where T represents one if the trigonometric ratio. One should also remember that, which trigonometric ratios are positive in a particular quadrant.
Recently Updated Pages
Master Class 10 Computer Science: Engaging Questions & Answers for Success

Master Class 10 General Knowledge: Engaging Questions & Answers for Success

Master Class 10 English: Engaging Questions & Answers for Success

Master Class 10 Social Science: Engaging Questions & Answers for Success

Master Class 10 Maths: Engaging Questions & Answers for Success

Master Class 10 Science: Engaging Questions & Answers for Success

Trending doubts
What is the median of the first 10 natural numbers class 10 maths CBSE

Which women's tennis player has 24 Grand Slam singles titles?

Who is the Brand Ambassador of Incredible India?

Why is there a time difference of about 5 hours between class 10 social science CBSE

Write a letter to the principal requesting him to grant class 10 english CBSE

State and prove converse of BPT Basic Proportionality class 10 maths CBSE

