
How do you find the exact functional value $ \cos \,{105^ \circ } $ using the cosine sum or difference identity?
Answer
549k+ views
Hint: To find the exact functional value cos 105o, by Here we use the standard trigonometric formula cosine sum i.e., $ cos\,(A + B) $ or cosine difference i.e., $ cos\,(A - B) $ identity defined as $ cos\,A.cos\,B - sin\,A.sin\,B $ and $ cos\,A.cos\,B + sin\,A.sin\,B $ using one of these we get required value.
Complete step-by-step answer:
We solve this by two methods
Method:1
Here in this question, we have to find the exact value of given $ \cos \,{105^ \circ } $ by using cosine sum identity
$ \cos \,{105^ \circ } $ can be written as $ cos\,\left( {60 + 45} \right) $
We know the formula $ cos\,(A + B) = $ $ cos\,A.cos\,B - sin\,A.sin\,B $
Here $ A = \,6{0^o} $ and $ B = \,4{5^o} $
Substitute A and B in formula then
$ \Rightarrow cos\,\left( {60 + 45} \right) = cos\,6{0^o}.cos\,4{5^o} - sin\,6{0^o}.sin\,4{5^o} $
By using specified cosine and sine angle i.e., $ cos\,\,6{0^o} = \dfrac{1}{2} $ , $ cos\,\,4{5^o} = \dfrac{1}{{\sqrt 2 }} $ , $ sin\,6{0^o} = \dfrac{{\sqrt 3 }}{2} $ and $ sin\,4{5^o} = \dfrac{1}{{\sqrt 2 }} $
$ \therefore \,\,cos\,\left( {10{5^o}} \right) = cos\,6{0^o}.cos\,4{5^o} - sin\,6{0^o}.sin\,4{5^o} $
Substituting the values of $ cos\,\,6{0^o} $ , $ cos\,\,{45^o} $ , $ \sin \,\,6{0^o} $ and $ \sin \,\,{45^o} $
$ \Rightarrow cos\,\left( {10{5^o}} \right) = \dfrac{1}{2}.\dfrac{1}{{\sqrt 2 }} - \dfrac{{\sqrt 3 }}{2}.\dfrac{1}{{\sqrt 2 }} $
On simplification we get
$ \Rightarrow cos\,\left( {10{5^o}} \right) = \dfrac{1}{{2\sqrt 2 }} - \dfrac{{\sqrt 3 }}{{2\sqrt 2 }} $
Take $ 2\sqrt 2 $ as LCM in RHS
$ \therefore cos\,\left( {10{5^o}} \right) = \dfrac{{1 - \sqrt 3 }}{{2\sqrt 2 }} $
Hence, the exact functional value of $ \cos \,{105^ \circ } $ is $ \dfrac{{1 - \sqrt 3 }}{{2\sqrt 2 }} $
Or
Method:2
Otherwise, we can also find the exact value of given $ \cos \,{105^ \circ } $ by using cosine difference identity
$ \cos \,{105^ \circ } $ can be written as $ cos\,\left( {180 - 75} \right) $
We know the formula $ cos\,(A - B) = cos\,A.cos\,B + sin\,A.sin\,B $
Here $ A = \,18{0^o} $ and $ B = \,7{5^o} $
Substitute A and B in formula then
$ \therefore \,\,cos\,\left( {180 - 75} \right) = cos\,18{0^o}.cos\,7{5^o} + sin\,18{0^o}.sin\,7{5^o} $
We know the specified angle $ cos 18{0^ \circ } = - 1 $ and $ \sin \,18{0^ \circ } = 0 $
But we don’t know the value of $ cos\,{75^o} $ and $ sin\,{75^o} $ to find this by using formula of cosine and sine sum identity i.e., $ cos\,(A + B) = cos\,A.cos\,B - sin\,A.sin\,B $ and $ \sin \,(A + B) = sin\,A.cos\,B + cos\,A.sin\,B $
$ \Rightarrow \,cos{75^o} = \cos \left( {45 + 30} \right) = cos\,{45^o}.cos\,{30^o} - sin\,{45^o}.sin\,{30^o} $
$ \sin {75^o} = \sin \,(45 + 30) = sin\,{45^o}.cos\,{30^o} + cos\,{45^o}.sin\,{30^o} $
We know the value of $ cos\,\,4{5^o} = \dfrac{1}{{\sqrt 2 }} $ , $ cos\,\,{30^o} = \dfrac{{\sqrt 3 }}{2} $ , $ sin\,4{5^o} = \dfrac{1}{{\sqrt 2 }} $ and $ sin\,{30^o} = \dfrac{1}{2} $
$ \Rightarrow \,cos{75^o} = \dfrac{1}{{\sqrt 2 }}.\dfrac{{\sqrt 3 }}{2} - \dfrac{1}{{\sqrt 2 }}.\dfrac{1}{2} = \dfrac{{\sqrt 3 - 1}}{{2\sqrt 2 }} $
$ \,\sin {75^o} = \dfrac{1}{{\sqrt 2 }}.\dfrac{{\sqrt 3 }}{2} + \dfrac{1}{{\sqrt 2 }}.\dfrac{1}{2} = \dfrac{{\sqrt 3 + 1}}{{2\sqrt 2 }} $
$ \,\therefore \cos {105^o} = \,\,cos\,\left( {180 - 75} \right) = - 1.\left( {\dfrac{{\sqrt 3 - 1}}{{2\sqrt 2 }}} \right) + 0.\left( {\dfrac{{\sqrt 3 + 1}}{{2\sqrt 2 }}} \right) $
$ \,\therefore \cos {105^o} = \,\dfrac{{1 - \sqrt 3 }}{{2\sqrt 2 }} $
Hence, the exact functional value of $ \cos \,{105^ \circ } $ is $ \dfrac{{1 - \sqrt 3 }}{{2\sqrt 2 }} $
So, the correct answer is “ $ \dfrac{{1 - \sqrt 3 }}{{2\sqrt 2 }} $ ”.
Note: The value of cosine can be determined by using several methods like double angle formula, half angle formula. Here we have found the exact value of $ \cos \,{105^ \circ } $ by applying the cosine sum formula and cosine difference formula. It is defined as $ cos\,(A + B) = cos\,A.cos\,B - sin\,A.sin\,B $ and $ cos\,(A - B) = cos\,A.cos\,B + sin\,A.sin\,B $ . Here we have used the value of trigonometry ratios of standard angles. Hence, we can determine the solution for the question.
Complete step-by-step answer:
We solve this by two methods
Method:1
Here in this question, we have to find the exact value of given $ \cos \,{105^ \circ } $ by using cosine sum identity
$ \cos \,{105^ \circ } $ can be written as $ cos\,\left( {60 + 45} \right) $
We know the formula $ cos\,(A + B) = $ $ cos\,A.cos\,B - sin\,A.sin\,B $
Here $ A = \,6{0^o} $ and $ B = \,4{5^o} $
Substitute A and B in formula then
$ \Rightarrow cos\,\left( {60 + 45} \right) = cos\,6{0^o}.cos\,4{5^o} - sin\,6{0^o}.sin\,4{5^o} $
By using specified cosine and sine angle i.e., $ cos\,\,6{0^o} = \dfrac{1}{2} $ , $ cos\,\,4{5^o} = \dfrac{1}{{\sqrt 2 }} $ , $ sin\,6{0^o} = \dfrac{{\sqrt 3 }}{2} $ and $ sin\,4{5^o} = \dfrac{1}{{\sqrt 2 }} $
$ \therefore \,\,cos\,\left( {10{5^o}} \right) = cos\,6{0^o}.cos\,4{5^o} - sin\,6{0^o}.sin\,4{5^o} $
Substituting the values of $ cos\,\,6{0^o} $ , $ cos\,\,{45^o} $ , $ \sin \,\,6{0^o} $ and $ \sin \,\,{45^o} $
$ \Rightarrow cos\,\left( {10{5^o}} \right) = \dfrac{1}{2}.\dfrac{1}{{\sqrt 2 }} - \dfrac{{\sqrt 3 }}{2}.\dfrac{1}{{\sqrt 2 }} $
On simplification we get
$ \Rightarrow cos\,\left( {10{5^o}} \right) = \dfrac{1}{{2\sqrt 2 }} - \dfrac{{\sqrt 3 }}{{2\sqrt 2 }} $
Take $ 2\sqrt 2 $ as LCM in RHS
$ \therefore cos\,\left( {10{5^o}} \right) = \dfrac{{1 - \sqrt 3 }}{{2\sqrt 2 }} $
Hence, the exact functional value of $ \cos \,{105^ \circ } $ is $ \dfrac{{1 - \sqrt 3 }}{{2\sqrt 2 }} $
Or
Method:2
Otherwise, we can also find the exact value of given $ \cos \,{105^ \circ } $ by using cosine difference identity
$ \cos \,{105^ \circ } $ can be written as $ cos\,\left( {180 - 75} \right) $
We know the formula $ cos\,(A - B) = cos\,A.cos\,B + sin\,A.sin\,B $
Here $ A = \,18{0^o} $ and $ B = \,7{5^o} $
Substitute A and B in formula then
$ \therefore \,\,cos\,\left( {180 - 75} \right) = cos\,18{0^o}.cos\,7{5^o} + sin\,18{0^o}.sin\,7{5^o} $
We know the specified angle $ cos 18{0^ \circ } = - 1 $ and $ \sin \,18{0^ \circ } = 0 $
But we don’t know the value of $ cos\,{75^o} $ and $ sin\,{75^o} $ to find this by using formula of cosine and sine sum identity i.e., $ cos\,(A + B) = cos\,A.cos\,B - sin\,A.sin\,B $ and $ \sin \,(A + B) = sin\,A.cos\,B + cos\,A.sin\,B $
$ \Rightarrow \,cos{75^o} = \cos \left( {45 + 30} \right) = cos\,{45^o}.cos\,{30^o} - sin\,{45^o}.sin\,{30^o} $
$ \sin {75^o} = \sin \,(45 + 30) = sin\,{45^o}.cos\,{30^o} + cos\,{45^o}.sin\,{30^o} $
We know the value of $ cos\,\,4{5^o} = \dfrac{1}{{\sqrt 2 }} $ , $ cos\,\,{30^o} = \dfrac{{\sqrt 3 }}{2} $ , $ sin\,4{5^o} = \dfrac{1}{{\sqrt 2 }} $ and $ sin\,{30^o} = \dfrac{1}{2} $
$ \Rightarrow \,cos{75^o} = \dfrac{1}{{\sqrt 2 }}.\dfrac{{\sqrt 3 }}{2} - \dfrac{1}{{\sqrt 2 }}.\dfrac{1}{2} = \dfrac{{\sqrt 3 - 1}}{{2\sqrt 2 }} $
$ \,\sin {75^o} = \dfrac{1}{{\sqrt 2 }}.\dfrac{{\sqrt 3 }}{2} + \dfrac{1}{{\sqrt 2 }}.\dfrac{1}{2} = \dfrac{{\sqrt 3 + 1}}{{2\sqrt 2 }} $
$ \,\therefore \cos {105^o} = \,\,cos\,\left( {180 - 75} \right) = - 1.\left( {\dfrac{{\sqrt 3 - 1}}{{2\sqrt 2 }}} \right) + 0.\left( {\dfrac{{\sqrt 3 + 1}}{{2\sqrt 2 }}} \right) $
$ \,\therefore \cos {105^o} = \,\dfrac{{1 - \sqrt 3 }}{{2\sqrt 2 }} $
Hence, the exact functional value of $ \cos \,{105^ \circ } $ is $ \dfrac{{1 - \sqrt 3 }}{{2\sqrt 2 }} $
So, the correct answer is “ $ \dfrac{{1 - \sqrt 3 }}{{2\sqrt 2 }} $ ”.
Note: The value of cosine can be determined by using several methods like double angle formula, half angle formula. Here we have found the exact value of $ \cos \,{105^ \circ } $ by applying the cosine sum formula and cosine difference formula. It is defined as $ cos\,(A + B) = cos\,A.cos\,B - sin\,A.sin\,B $ and $ cos\,(A - B) = cos\,A.cos\,B + sin\,A.sin\,B $ . Here we have used the value of trigonometry ratios of standard angles. Hence, we can determine the solution for the question.
Recently Updated Pages
Why are manures considered better than fertilizers class 11 biology CBSE

Find the coordinates of the midpoint of the line segment class 11 maths CBSE

Distinguish between static friction limiting friction class 11 physics CBSE

The Chairman of the constituent Assembly was A Jawaharlal class 11 social science CBSE

The first National Commission on Labour NCL submitted class 11 social science CBSE

Number of all subshell of n + l 7 is A 4 B 5 C 6 D class 11 chemistry CBSE

Trending doubts
What is meant by exothermic and endothermic reactions class 11 chemistry CBSE

10 examples of friction in our daily life

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

1 Quintal is equal to a 110 kg b 10 kg c 100kg d 1000 class 11 physics CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells

What are Quantum numbers Explain the quantum number class 11 chemistry CBSE

