
Find the equations of the sides of a triangle whose vertices are at A (-1, 8), B (4, -2) and C (-5, -3).
Answer
576k+ views
Hint: Every side of a triangle has two endpoints or vertices. A line is drawn through these points to make a side. Here the points are given in the question we just have to find the equation of the line through these points using two points form of an equation
Complete step-by-step answer:
Two points form of a linear equation is $ y - {y_1} = \left( {\dfrac{{{y_2} - {y_1}}}{{{x_2} - {x_1}}}} \right)\left( {x - {x_1}} \right) $ where the first point is $ \left( {{x_1},{y_1}} \right) $ and $ \left( {{x_2},{y_2}} \right) $ is the second point.
We are given a triangle with vertices A (-1, 8), B (4, -2) and C (-5, -3).
We have to find the equations of the sides of the above triangle ABC.
Equation when two points are given is $ y - {y_1} = \left( {\dfrac{{{y_2} - {y_1}}}{{{x_2} - {x_1}}}} \right)\left( {x - {x_1}} \right) $
Equation of side AB= $ y - {y_1} = \left( {\dfrac{{{y_2} - {y_1}}}{{{x_2} - {x_1}}}} \right)\left( {x - {x_1}} \right) $
Where $
\left( {{x_1},{y_1}} \right) = A( - 1,8) = ( - 1,8) \\
\left( {{x_2},{y_2}} \right) = B(4, - 2) = (4, - 2) \\
$
$
y - 8 = \left( {\dfrac{{ - 2 - 8}}{{4 - \left( { - 1} \right)}}} \right)\left( {x - \left( { - 1} \right)} \right) \\
y - 8 = \left( {\dfrac{{ - 10}}{{4 + 1}}} \right)\left( {x + 1} \right) \\
y - 8 = \left( {\dfrac{{ - 10}}{5}} \right)\left( {x + 1} \right) \\
y - 8 = \left( { - 2} \right)\left( {x + 1} \right) \\
y - 8 = - 2x - 2 \\
2x + y - 8 + 2 = 0 \\
2x + y - 6 = 0 \\
$
Equation of side AB is $ 2x + y - 6 = 0 $
Equation of side BC= $ y - {y_1} = \left( {\dfrac{{{y_2} - {y_1}}}{{{x_2} - {x_1}}}} \right)\left( {x - {x_1}} \right) $
Where $
\left( {{x_1},{y_1}} \right) = B(4, - 2) = (4, - 2) \\
\left( {{x_2},{y_2}} \right) = C( - 5, - 3) = ( - 5, - 3) \\
$
$
y - \left( { - 2} \right) = \left( {\dfrac{{ - 3 - \left( { - 2} \right)}}{{ - 5 - 4}}} \right)\left( {x - 4} \right) \\
y + 2 = \left( {\dfrac{{ - 3 + 2}}{{ - 9}}} \right)\left( {x - 4} \right) \\
y + 2 = \left( {\dfrac{{ - 1}}{{ - 9}}} \right)\left( {x - 4} \right) \\
y + 2 = \left( {\dfrac{1}{9}} \right)\left( {x - 4} \right) \\
9\left( {y + 2} \right) = x - 4 \\
9y + 18 = x - 4 \\
x - 9y - 4 - 18 = 0 \\
x - 9y - 22 = 0 \\
$
Equation of side BC is $ x - 9y - 22 = 0 $
Equation of side CA= $ y - {y_1} = \left( {\dfrac{{{y_2} - {y_1}}}{{{x_2} - {x_1}}}} \right)\left( {x - {x_1}} \right) $
Where $
\left( {{x_1},{y_1}} \right) = C( - 5, - 3) = ( - 5, - 3) \\
\left( {{x_2},{y_2}} \right) = A( - 1,8) = ( - 1,8) \\
$
$
y - \left( { - 3} \right) = \left( {\dfrac{{8 - \left( { - 3} \right)}}{{ - 1 - \left( { - 5} \right)}}} \right)\left( {x - \left( { - 5} \right)} \right) \\
y + 3 = \left( {\dfrac{{8 + 3}}{{ - 1 + 5}}} \right)\left( {x + 5} \right) \\
y + 3 = \left( {\dfrac{{11}}{4}} \right)\left( {x + 5} \right) \\
y + 3 = \left( {\dfrac{{11}}{4}} \right)\left( {x + 5} \right) \\
4\left( {y + 3} \right) = 11\left( {x + 5} \right) \\
4y + 12 = 11x + 55 \\
11x - 4y + 55 - 12 = 0 \\
11x - 4y + 43 = 0 \\
$
Equation of side CA is $ 11x - 4y + 43 = 0 $
Equations of sides AB, BC, CA are $ 2x + y - 6 = 0 $ , \[x - 9y - 22 = 0\], \[11x - 4y + 43 = 0 $ respectively.
Note: To form a line we at least need two points. A line is defined as a line of points that extends infinitely in two directions. It has one dimension, length. Points that are on the same line are called collinear points. A line is written with an arrowhead.
Complete step-by-step answer:
Two points form of a linear equation is $ y - {y_1} = \left( {\dfrac{{{y_2} - {y_1}}}{{{x_2} - {x_1}}}} \right)\left( {x - {x_1}} \right) $ where the first point is $ \left( {{x_1},{y_1}} \right) $ and $ \left( {{x_2},{y_2}} \right) $ is the second point.
We are given a triangle with vertices A (-1, 8), B (4, -2) and C (-5, -3).
We have to find the equations of the sides of the above triangle ABC.
Equation when two points are given is $ y - {y_1} = \left( {\dfrac{{{y_2} - {y_1}}}{{{x_2} - {x_1}}}} \right)\left( {x - {x_1}} \right) $
Equation of side AB= $ y - {y_1} = \left( {\dfrac{{{y_2} - {y_1}}}{{{x_2} - {x_1}}}} \right)\left( {x - {x_1}} \right) $
Where $
\left( {{x_1},{y_1}} \right) = A( - 1,8) = ( - 1,8) \\
\left( {{x_2},{y_2}} \right) = B(4, - 2) = (4, - 2) \\
$
$
y - 8 = \left( {\dfrac{{ - 2 - 8}}{{4 - \left( { - 1} \right)}}} \right)\left( {x - \left( { - 1} \right)} \right) \\
y - 8 = \left( {\dfrac{{ - 10}}{{4 + 1}}} \right)\left( {x + 1} \right) \\
y - 8 = \left( {\dfrac{{ - 10}}{5}} \right)\left( {x + 1} \right) \\
y - 8 = \left( { - 2} \right)\left( {x + 1} \right) \\
y - 8 = - 2x - 2 \\
2x + y - 8 + 2 = 0 \\
2x + y - 6 = 0 \\
$
Equation of side AB is $ 2x + y - 6 = 0 $
Equation of side BC= $ y - {y_1} = \left( {\dfrac{{{y_2} - {y_1}}}{{{x_2} - {x_1}}}} \right)\left( {x - {x_1}} \right) $
Where $
\left( {{x_1},{y_1}} \right) = B(4, - 2) = (4, - 2) \\
\left( {{x_2},{y_2}} \right) = C( - 5, - 3) = ( - 5, - 3) \\
$
$
y - \left( { - 2} \right) = \left( {\dfrac{{ - 3 - \left( { - 2} \right)}}{{ - 5 - 4}}} \right)\left( {x - 4} \right) \\
y + 2 = \left( {\dfrac{{ - 3 + 2}}{{ - 9}}} \right)\left( {x - 4} \right) \\
y + 2 = \left( {\dfrac{{ - 1}}{{ - 9}}} \right)\left( {x - 4} \right) \\
y + 2 = \left( {\dfrac{1}{9}} \right)\left( {x - 4} \right) \\
9\left( {y + 2} \right) = x - 4 \\
9y + 18 = x - 4 \\
x - 9y - 4 - 18 = 0 \\
x - 9y - 22 = 0 \\
$
Equation of side BC is $ x - 9y - 22 = 0 $
Equation of side CA= $ y - {y_1} = \left( {\dfrac{{{y_2} - {y_1}}}{{{x_2} - {x_1}}}} \right)\left( {x - {x_1}} \right) $
Where $
\left( {{x_1},{y_1}} \right) = C( - 5, - 3) = ( - 5, - 3) \\
\left( {{x_2},{y_2}} \right) = A( - 1,8) = ( - 1,8) \\
$
$
y - \left( { - 3} \right) = \left( {\dfrac{{8 - \left( { - 3} \right)}}{{ - 1 - \left( { - 5} \right)}}} \right)\left( {x - \left( { - 5} \right)} \right) \\
y + 3 = \left( {\dfrac{{8 + 3}}{{ - 1 + 5}}} \right)\left( {x + 5} \right) \\
y + 3 = \left( {\dfrac{{11}}{4}} \right)\left( {x + 5} \right) \\
y + 3 = \left( {\dfrac{{11}}{4}} \right)\left( {x + 5} \right) \\
4\left( {y + 3} \right) = 11\left( {x + 5} \right) \\
4y + 12 = 11x + 55 \\
11x - 4y + 55 - 12 = 0 \\
11x - 4y + 43 = 0 \\
$
Equation of side CA is $ 11x - 4y + 43 = 0 $
Equations of sides AB, BC, CA are $ 2x + y - 6 = 0 $ , \[x - 9y - 22 = 0\], \[11x - 4y + 43 = 0 $ respectively.
Note: To form a line we at least need two points. A line is defined as a line of points that extends infinitely in two directions. It has one dimension, length. Points that are on the same line are called collinear points. A line is written with an arrowhead.
Recently Updated Pages
Why are manures considered better than fertilizers class 11 biology CBSE

Find the coordinates of the midpoint of the line segment class 11 maths CBSE

Distinguish between static friction limiting friction class 11 physics CBSE

The Chairman of the constituent Assembly was A Jawaharlal class 11 social science CBSE

The first National Commission on Labour NCL submitted class 11 social science CBSE

Number of all subshell of n + l 7 is A 4 B 5 C 6 D class 11 chemistry CBSE

Trending doubts
What is meant by exothermic and endothermic reactions class 11 chemistry CBSE

10 examples of friction in our daily life

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

1 Quintal is equal to a 110 kg b 10 kg c 100kg d 1000 class 11 physics CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells

What are Quantum numbers Explain the quantum number class 11 chemistry CBSE

