
Find the equations of the sides of a triangle whose vertices are at A (-1, 8), B (4, -2) and C (-5, -3).
Answer
510k+ views
Hint: Every side of a triangle has two endpoints or vertices. A line is drawn through these points to make a side. Here the points are given in the question we just have to find the equation of the line through these points using two points form of an equation
Complete step-by-step answer:
Two points form of a linear equation is $ y - {y_1} = \left( {\dfrac{{{y_2} - {y_1}}}{{{x_2} - {x_1}}}} \right)\left( {x - {x_1}} \right) $ where the first point is $ \left( {{x_1},{y_1}} \right) $ and $ \left( {{x_2},{y_2}} \right) $ is the second point.
We are given a triangle with vertices A (-1, 8), B (4, -2) and C (-5, -3).
We have to find the equations of the sides of the above triangle ABC.
Equation when two points are given is $ y - {y_1} = \left( {\dfrac{{{y_2} - {y_1}}}{{{x_2} - {x_1}}}} \right)\left( {x - {x_1}} \right) $
Equation of side AB= $ y - {y_1} = \left( {\dfrac{{{y_2} - {y_1}}}{{{x_2} - {x_1}}}} \right)\left( {x - {x_1}} \right) $
Where $
\left( {{x_1},{y_1}} \right) = A( - 1,8) = ( - 1,8) \\
\left( {{x_2},{y_2}} \right) = B(4, - 2) = (4, - 2) \\
$
$
y - 8 = \left( {\dfrac{{ - 2 - 8}}{{4 - \left( { - 1} \right)}}} \right)\left( {x - \left( { - 1} \right)} \right) \\
y - 8 = \left( {\dfrac{{ - 10}}{{4 + 1}}} \right)\left( {x + 1} \right) \\
y - 8 = \left( {\dfrac{{ - 10}}{5}} \right)\left( {x + 1} \right) \\
y - 8 = \left( { - 2} \right)\left( {x + 1} \right) \\
y - 8 = - 2x - 2 \\
2x + y - 8 + 2 = 0 \\
2x + y - 6 = 0 \\
$
Equation of side AB is $ 2x + y - 6 = 0 $
Equation of side BC= $ y - {y_1} = \left( {\dfrac{{{y_2} - {y_1}}}{{{x_2} - {x_1}}}} \right)\left( {x - {x_1}} \right) $
Where $
\left( {{x_1},{y_1}} \right) = B(4, - 2) = (4, - 2) \\
\left( {{x_2},{y_2}} \right) = C( - 5, - 3) = ( - 5, - 3) \\
$
$
y - \left( { - 2} \right) = \left( {\dfrac{{ - 3 - \left( { - 2} \right)}}{{ - 5 - 4}}} \right)\left( {x - 4} \right) \\
y + 2 = \left( {\dfrac{{ - 3 + 2}}{{ - 9}}} \right)\left( {x - 4} \right) \\
y + 2 = \left( {\dfrac{{ - 1}}{{ - 9}}} \right)\left( {x - 4} \right) \\
y + 2 = \left( {\dfrac{1}{9}} \right)\left( {x - 4} \right) \\
9\left( {y + 2} \right) = x - 4 \\
9y + 18 = x - 4 \\
x - 9y - 4 - 18 = 0 \\
x - 9y - 22 = 0 \\
$
Equation of side BC is $ x - 9y - 22 = 0 $
Equation of side CA= $ y - {y_1} = \left( {\dfrac{{{y_2} - {y_1}}}{{{x_2} - {x_1}}}} \right)\left( {x - {x_1}} \right) $
Where $
\left( {{x_1},{y_1}} \right) = C( - 5, - 3) = ( - 5, - 3) \\
\left( {{x_2},{y_2}} \right) = A( - 1,8) = ( - 1,8) \\
$
$
y - \left( { - 3} \right) = \left( {\dfrac{{8 - \left( { - 3} \right)}}{{ - 1 - \left( { - 5} \right)}}} \right)\left( {x - \left( { - 5} \right)} \right) \\
y + 3 = \left( {\dfrac{{8 + 3}}{{ - 1 + 5}}} \right)\left( {x + 5} \right) \\
y + 3 = \left( {\dfrac{{11}}{4}} \right)\left( {x + 5} \right) \\
y + 3 = \left( {\dfrac{{11}}{4}} \right)\left( {x + 5} \right) \\
4\left( {y + 3} \right) = 11\left( {x + 5} \right) \\
4y + 12 = 11x + 55 \\
11x - 4y + 55 - 12 = 0 \\
11x - 4y + 43 = 0 \\
$
Equation of side CA is $ 11x - 4y + 43 = 0 $
Equations of sides AB, BC, CA are $ 2x + y - 6 = 0 $ , \[x - 9y - 22 = 0\], \[11x - 4y + 43 = 0 $ respectively.
Note: To form a line we at least need two points. A line is defined as a line of points that extends infinitely in two directions. It has one dimension, length. Points that are on the same line are called collinear points. A line is written with an arrowhead.
Complete step-by-step answer:
Two points form of a linear equation is $ y - {y_1} = \left( {\dfrac{{{y_2} - {y_1}}}{{{x_2} - {x_1}}}} \right)\left( {x - {x_1}} \right) $ where the first point is $ \left( {{x_1},{y_1}} \right) $ and $ \left( {{x_2},{y_2}} \right) $ is the second point.
We are given a triangle with vertices A (-1, 8), B (4, -2) and C (-5, -3).

We have to find the equations of the sides of the above triangle ABC.
Equation when two points are given is $ y - {y_1} = \left( {\dfrac{{{y_2} - {y_1}}}{{{x_2} - {x_1}}}} \right)\left( {x - {x_1}} \right) $
Equation of side AB= $ y - {y_1} = \left( {\dfrac{{{y_2} - {y_1}}}{{{x_2} - {x_1}}}} \right)\left( {x - {x_1}} \right) $
Where $
\left( {{x_1},{y_1}} \right) = A( - 1,8) = ( - 1,8) \\
\left( {{x_2},{y_2}} \right) = B(4, - 2) = (4, - 2) \\
$
$
y - 8 = \left( {\dfrac{{ - 2 - 8}}{{4 - \left( { - 1} \right)}}} \right)\left( {x - \left( { - 1} \right)} \right) \\
y - 8 = \left( {\dfrac{{ - 10}}{{4 + 1}}} \right)\left( {x + 1} \right) \\
y - 8 = \left( {\dfrac{{ - 10}}{5}} \right)\left( {x + 1} \right) \\
y - 8 = \left( { - 2} \right)\left( {x + 1} \right) \\
y - 8 = - 2x - 2 \\
2x + y - 8 + 2 = 0 \\
2x + y - 6 = 0 \\
$
Equation of side AB is $ 2x + y - 6 = 0 $
Equation of side BC= $ y - {y_1} = \left( {\dfrac{{{y_2} - {y_1}}}{{{x_2} - {x_1}}}} \right)\left( {x - {x_1}} \right) $
Where $
\left( {{x_1},{y_1}} \right) = B(4, - 2) = (4, - 2) \\
\left( {{x_2},{y_2}} \right) = C( - 5, - 3) = ( - 5, - 3) \\
$
$
y - \left( { - 2} \right) = \left( {\dfrac{{ - 3 - \left( { - 2} \right)}}{{ - 5 - 4}}} \right)\left( {x - 4} \right) \\
y + 2 = \left( {\dfrac{{ - 3 + 2}}{{ - 9}}} \right)\left( {x - 4} \right) \\
y + 2 = \left( {\dfrac{{ - 1}}{{ - 9}}} \right)\left( {x - 4} \right) \\
y + 2 = \left( {\dfrac{1}{9}} \right)\left( {x - 4} \right) \\
9\left( {y + 2} \right) = x - 4 \\
9y + 18 = x - 4 \\
x - 9y - 4 - 18 = 0 \\
x - 9y - 22 = 0 \\
$
Equation of side BC is $ x - 9y - 22 = 0 $
Equation of side CA= $ y - {y_1} = \left( {\dfrac{{{y_2} - {y_1}}}{{{x_2} - {x_1}}}} \right)\left( {x - {x_1}} \right) $
Where $
\left( {{x_1},{y_1}} \right) = C( - 5, - 3) = ( - 5, - 3) \\
\left( {{x_2},{y_2}} \right) = A( - 1,8) = ( - 1,8) \\
$
$
y - \left( { - 3} \right) = \left( {\dfrac{{8 - \left( { - 3} \right)}}{{ - 1 - \left( { - 5} \right)}}} \right)\left( {x - \left( { - 5} \right)} \right) \\
y + 3 = \left( {\dfrac{{8 + 3}}{{ - 1 + 5}}} \right)\left( {x + 5} \right) \\
y + 3 = \left( {\dfrac{{11}}{4}} \right)\left( {x + 5} \right) \\
y + 3 = \left( {\dfrac{{11}}{4}} \right)\left( {x + 5} \right) \\
4\left( {y + 3} \right) = 11\left( {x + 5} \right) \\
4y + 12 = 11x + 55 \\
11x - 4y + 55 - 12 = 0 \\
11x - 4y + 43 = 0 \\
$
Equation of side CA is $ 11x - 4y + 43 = 0 $
Equations of sides AB, BC, CA are $ 2x + y - 6 = 0 $ , \[x - 9y - 22 = 0\], \[11x - 4y + 43 = 0 $ respectively.
Note: To form a line we at least need two points. A line is defined as a line of points that extends infinitely in two directions. It has one dimension, length. Points that are on the same line are called collinear points. A line is written with an arrowhead.
Recently Updated Pages
Master Class 11 Physics: Engaging Questions & Answers for Success

Master Class 11 Chemistry: Engaging Questions & Answers for Success

Master Class 11 Biology: Engaging Questions & Answers for Success

Class 11 Question and Answer - Your Ultimate Solutions Guide

Master Class 11 Business Studies: Engaging Questions & Answers for Success

Master Class 11 Computer Science: Engaging Questions & Answers for Success

Trending doubts
Explain why it is said like that Mock drill is use class 11 social science CBSE

Which of the following blood vessels in the circulatory class 11 biology CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells

1 ton equals to A 100 kg B 1000 kg C 10 kg D 10000 class 11 physics CBSE

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

Which one is a true fish A Jellyfish B Starfish C Dogfish class 11 biology CBSE
