
Find the eccentricity of the ellipse whose equation is \[{{\left( x-3 \right)}^{2}}+{{\left( y-4 \right)}^{2}}=\dfrac{{{y}^{2}}}{9}\].
Choose the correct option:
A. \[\dfrac{\sqrt{3}}{2}\]
B. \[\dfrac{1}{3}\]
C. \[\dfrac{1}{3\sqrt{2}}\]
D. \[\dfrac{1}{\sqrt{3}}\]
Answer
602.4k+ views
Hint: The ellipse when written in the standard form \[\dfrac{{{\left( x-h \right)}^{2}}}{{{a}^{2}}}+\dfrac{{{\left( y-k \right)}^{2}}}{{{b}^{2}}}=1\], will have the eccentricity (e) given as\[e=\dfrac{\sqrt{{{b}^{2}}-{{a}^{2}}}}{b}\]if b is the major axis.
Complete step-by-step solution -
In the question, we have to find the eccentricity of the ellipse\[{{\left( x-3 \right)}^{2}}+{{\left( y-4 \right)}^{2}}=\dfrac{{{y}^{2}}}{9}\].
Now, we know that the standard form of the ellipse is written in the form of\[\dfrac{{{\left( x-h \right)}^{2}}}{{{a}^{2}}}+\dfrac{{{\left( y-k \right)}^{2}}}{{{b}^{2}}}=1\], whose major axis is b if \[b>a\]. So when b is the major axis, then the eccentricity of the ellipse will be given by the formula\[e=\dfrac{\sqrt{{{b}^{2}}-{{a}^{2}}}}{b}\].
Now, the ellipse that we have is \[{{\left( x-3 \right)}^{2}}+{{\left( y-4 \right)}^{2}}=\dfrac{{{y}^{2}}}{9}\], which will be first be written in the standard form, as shown below:
\[\begin{align}
& \Rightarrow {{\left( x-3 \right)}^{2}}+{{\left( y-4 \right)}^{2}}=\dfrac{{{y}^{2}}}{9} \\
& \Rightarrow {{\left( x-3 \right)}^{2}}+{{\left( y-4 \right)}^{2}}-\dfrac{{{y}^{2}}}{9}=0 \\
\end{align}\]
Next, we will multiply and divide the expression \[{{\left( x-3 \right)}^{2}}\]and \[{{\left( y-4 \right)}^{2}}\] with 9, to get:
\[\Rightarrow \dfrac{{{\left( x-3 \right)}^{2}}\cdot \ 9}{9}+\dfrac{{{\left( y-4 \right)}^{2}}\cdot \ 9}{9}-\dfrac{{{y}^{2}}}{9}=0\]
Then, we have to expand the expression \[{{\left( x-3 \right)}^{2}}\]and \[{{\left( y-4 \right)}^{2}}\]using the formula \[{{(a-b)}^{2}}={{a}^{2}}-2ab+{{b}^{2}}\] and we get:
\[\begin{align}
& \Rightarrow \dfrac{\left( {{x}^{2}}-6x+9 \right)\cdot \ 9+\left( {{y}^{2}}-8y+16 \right)\cdot \ 9-{{y}^{2}}}{9}=0 \\
& \Rightarrow \dfrac{9{{x}^{2}}-54x+81+9{{y}^{2}}-72y+144-{{y}^{2}}}{9}=0 \\
& \Rightarrow \dfrac{9{{x}^{2}}-54x+8{{y}^{2}}+225-72y}{9}=0 \\
\end{align}\]
Next, multiply both the sides with 9 to get:
\[\begin{align}
& \Rightarrow 9{{x}^{2}}-54x+8{{y}^{2}}+225-72y=0 \\
& \Rightarrow 9{{x}^{2}}-54x+8{{y}^{2}}-72y=-225 \\
& \Rightarrow 9\left( {{x}^{2}}-6x \right)+8\left( {{y}^{2}}-9y \right)=-225 \\
\end{align}\]
Then after simplifying, we will divide each side of the equation by 9, to get:
\[\Rightarrow \left( {{x}^{2}}-6x \right)+\dfrac{8}{9}\left( {{y}^{2}}-9y \right)=-\dfrac{225}{9}\]
Now, divide each side of the equation by 8, to get:
\[\Rightarrow \dfrac{1}{8}\left( {{x}^{2}}-6x \right)+\dfrac{1}{9}\left( {{y}^{2}}-9y \right)=-\dfrac{25}{8}\]
Adding \[\dfrac{9}{8}\]both the sides to get:
\[\Rightarrow \dfrac{1}{8}\left( {{x}^{2}}-6x+9 \right)+\dfrac{1}{9}\left( {{y}^{2}}-9y \right)=-\dfrac{25}{8}+\dfrac{1}{8}\left( 9 \right)\]
Next, we need to add \[\dfrac{1}{9}\left( \dfrac{81}{4} \right)\] both the sides and simplify to get the expression of the form \[{{(a-b)}^{2}}\]. So, we get:
\[\begin{align}
& \Rightarrow \dfrac{1}{8}{{\left( x-3 \right)}^{2}}+\dfrac{1}{9}{{\left( y-\dfrac{9}{2} \right)}^{2}}=-\dfrac{25}{8}+\dfrac{1}{8}\left( 9 \right)+\dfrac{1}{9}\left( \dfrac{81}{4} \right) \\
& \Rightarrow \dfrac{1}{8}{{\left( x-3 \right)}^{2}}+\dfrac{1}{9}{{\left( y-\dfrac{9}{2} \right)}^{2}}=\dfrac{1}{4} \\
\end{align}\]
Next, we will divide both the sides of the equation by \[\dfrac{1}{4}\], to get:
\[\begin{align}
& \Rightarrow \dfrac{{{\left( x-3 \right)}^{2}}}{2}+\dfrac{{{\left( y-\dfrac{9}{2} \right)}^{2}}}{\dfrac{9}{4}}=1 \\
& \Rightarrow \dfrac{{{\left( x-3 \right)}^{2}}}{{{\left( \sqrt{2} \right)}^{2}}}+\dfrac{{{\left( y-\dfrac{9}{2} \right)}^{2}}}{{{\left( \dfrac{3}{2} \right)}^{2}}}=1 \\
\end{align}\]
Now, this is the standard form of the ellipse that has \[a=\sqrt{2},\;\,\,b=\dfrac{3}{2}\].
Here, \[b>a\]so the major axis is parallel to the y-axis. Thus the eccentricity (e) will be given as:
\[\begin{align}
& \Rightarrow e=\dfrac{\sqrt{{{b}^{2}}-{{a}^{2}}}}{b} \\
& \Rightarrow e=\dfrac{\sqrt{{{\left( \dfrac{3}{2} \right)}^{2}}-{{(\sqrt{2})}^{2}}}}{\left( \dfrac{3}{2} \right)} \\
& \Rightarrow e=\dfrac{\sqrt{{{\left( \dfrac{3}{2} \right)}^{2}}-{{\left( \sqrt{2} \right)}^{2}}}\cdot \;2}{3} \\
& \Rightarrow e=\dfrac{2\cdot \sqrt{\dfrac{9}{4}-2}}{3} \\
& \Rightarrow e=\dfrac{2\cdot \dfrac{1}{2}}{3} \\
& \Rightarrow e=\dfrac{1}{3} \\
\end{align}\]
Finally, the correct answer is option B) \[\dfrac{1}{3}\]
Note: It is important to simplify the equation so as to bring it in the standard form of the ellipse and care has to be taken while simplifying. The formula of the eccentricity depends on the major and the minor axis. Also, care has to be taken when finding the minor and the major axis of the ellipse, so as to decide the orientation of the ellipse.
Complete step-by-step solution -
In the question, we have to find the eccentricity of the ellipse\[{{\left( x-3 \right)}^{2}}+{{\left( y-4 \right)}^{2}}=\dfrac{{{y}^{2}}}{9}\].
Now, we know that the standard form of the ellipse is written in the form of\[\dfrac{{{\left( x-h \right)}^{2}}}{{{a}^{2}}}+\dfrac{{{\left( y-k \right)}^{2}}}{{{b}^{2}}}=1\], whose major axis is b if \[b>a\]. So when b is the major axis, then the eccentricity of the ellipse will be given by the formula\[e=\dfrac{\sqrt{{{b}^{2}}-{{a}^{2}}}}{b}\].
Now, the ellipse that we have is \[{{\left( x-3 \right)}^{2}}+{{\left( y-4 \right)}^{2}}=\dfrac{{{y}^{2}}}{9}\], which will be first be written in the standard form, as shown below:
\[\begin{align}
& \Rightarrow {{\left( x-3 \right)}^{2}}+{{\left( y-4 \right)}^{2}}=\dfrac{{{y}^{2}}}{9} \\
& \Rightarrow {{\left( x-3 \right)}^{2}}+{{\left( y-4 \right)}^{2}}-\dfrac{{{y}^{2}}}{9}=0 \\
\end{align}\]
Next, we will multiply and divide the expression \[{{\left( x-3 \right)}^{2}}\]and \[{{\left( y-4 \right)}^{2}}\] with 9, to get:
\[\Rightarrow \dfrac{{{\left( x-3 \right)}^{2}}\cdot \ 9}{9}+\dfrac{{{\left( y-4 \right)}^{2}}\cdot \ 9}{9}-\dfrac{{{y}^{2}}}{9}=0\]
Then, we have to expand the expression \[{{\left( x-3 \right)}^{2}}\]and \[{{\left( y-4 \right)}^{2}}\]using the formula \[{{(a-b)}^{2}}={{a}^{2}}-2ab+{{b}^{2}}\] and we get:
\[\begin{align}
& \Rightarrow \dfrac{\left( {{x}^{2}}-6x+9 \right)\cdot \ 9+\left( {{y}^{2}}-8y+16 \right)\cdot \ 9-{{y}^{2}}}{9}=0 \\
& \Rightarrow \dfrac{9{{x}^{2}}-54x+81+9{{y}^{2}}-72y+144-{{y}^{2}}}{9}=0 \\
& \Rightarrow \dfrac{9{{x}^{2}}-54x+8{{y}^{2}}+225-72y}{9}=0 \\
\end{align}\]
Next, multiply both the sides with 9 to get:
\[\begin{align}
& \Rightarrow 9{{x}^{2}}-54x+8{{y}^{2}}+225-72y=0 \\
& \Rightarrow 9{{x}^{2}}-54x+8{{y}^{2}}-72y=-225 \\
& \Rightarrow 9\left( {{x}^{2}}-6x \right)+8\left( {{y}^{2}}-9y \right)=-225 \\
\end{align}\]
Then after simplifying, we will divide each side of the equation by 9, to get:
\[\Rightarrow \left( {{x}^{2}}-6x \right)+\dfrac{8}{9}\left( {{y}^{2}}-9y \right)=-\dfrac{225}{9}\]
Now, divide each side of the equation by 8, to get:
\[\Rightarrow \dfrac{1}{8}\left( {{x}^{2}}-6x \right)+\dfrac{1}{9}\left( {{y}^{2}}-9y \right)=-\dfrac{25}{8}\]
Adding \[\dfrac{9}{8}\]both the sides to get:
\[\Rightarrow \dfrac{1}{8}\left( {{x}^{2}}-6x+9 \right)+\dfrac{1}{9}\left( {{y}^{2}}-9y \right)=-\dfrac{25}{8}+\dfrac{1}{8}\left( 9 \right)\]
Next, we need to add \[\dfrac{1}{9}\left( \dfrac{81}{4} \right)\] both the sides and simplify to get the expression of the form \[{{(a-b)}^{2}}\]. So, we get:
\[\begin{align}
& \Rightarrow \dfrac{1}{8}{{\left( x-3 \right)}^{2}}+\dfrac{1}{9}{{\left( y-\dfrac{9}{2} \right)}^{2}}=-\dfrac{25}{8}+\dfrac{1}{8}\left( 9 \right)+\dfrac{1}{9}\left( \dfrac{81}{4} \right) \\
& \Rightarrow \dfrac{1}{8}{{\left( x-3 \right)}^{2}}+\dfrac{1}{9}{{\left( y-\dfrac{9}{2} \right)}^{2}}=\dfrac{1}{4} \\
\end{align}\]
Next, we will divide both the sides of the equation by \[\dfrac{1}{4}\], to get:
\[\begin{align}
& \Rightarrow \dfrac{{{\left( x-3 \right)}^{2}}}{2}+\dfrac{{{\left( y-\dfrac{9}{2} \right)}^{2}}}{\dfrac{9}{4}}=1 \\
& \Rightarrow \dfrac{{{\left( x-3 \right)}^{2}}}{{{\left( \sqrt{2} \right)}^{2}}}+\dfrac{{{\left( y-\dfrac{9}{2} \right)}^{2}}}{{{\left( \dfrac{3}{2} \right)}^{2}}}=1 \\
\end{align}\]
Now, this is the standard form of the ellipse that has \[a=\sqrt{2},\;\,\,b=\dfrac{3}{2}\].
Here, \[b>a\]so the major axis is parallel to the y-axis. Thus the eccentricity (e) will be given as:
\[\begin{align}
& \Rightarrow e=\dfrac{\sqrt{{{b}^{2}}-{{a}^{2}}}}{b} \\
& \Rightarrow e=\dfrac{\sqrt{{{\left( \dfrac{3}{2} \right)}^{2}}-{{(\sqrt{2})}^{2}}}}{\left( \dfrac{3}{2} \right)} \\
& \Rightarrow e=\dfrac{\sqrt{{{\left( \dfrac{3}{2} \right)}^{2}}-{{\left( \sqrt{2} \right)}^{2}}}\cdot \;2}{3} \\
& \Rightarrow e=\dfrac{2\cdot \sqrt{\dfrac{9}{4}-2}}{3} \\
& \Rightarrow e=\dfrac{2\cdot \dfrac{1}{2}}{3} \\
& \Rightarrow e=\dfrac{1}{3} \\
\end{align}\]
Finally, the correct answer is option B) \[\dfrac{1}{3}\]
Note: It is important to simplify the equation so as to bring it in the standard form of the ellipse and care has to be taken while simplifying. The formula of the eccentricity depends on the major and the minor axis. Also, care has to be taken when finding the minor and the major axis of the ellipse, so as to decide the orientation of the ellipse.
Recently Updated Pages
Master Class 11 Computer Science: Engaging Questions & Answers for Success

Master Class 11 Business Studies: Engaging Questions & Answers for Success

Master Class 11 Economics: Engaging Questions & Answers for Success

Master Class 11 English: Engaging Questions & Answers for Success

Master Class 11 Maths: Engaging Questions & Answers for Success

Master Class 11 Biology: Engaging Questions & Answers for Success

Trending doubts
One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

There are 720 permutations of the digits 1 2 3 4 5 class 11 maths CBSE

Discuss the various forms of bacteria class 11 biology CBSE

Draw a diagram of a plant cell and label at least eight class 11 biology CBSE

State the laws of reflection of light

Explain zero factorial class 11 maths CBSE

