
Find the domain of the following function $f\left( x \right)={{\log }_{4}}\left[ {{\log }_{5}}\left\{ {{\log }_{3}}\left( 18x-{{x}^{2}}-77 \right) \right\} \right]$.
(a) (7, 11)
(b) (8, 10)
(c) (-7, 11)
(d) (-8, 10)
Answer
574.5k+ views
Hint: First, before proceeding for this, we must know the following fact for the logarithm function that the domain of the log function is always greater than zero. Then, we should assume all the following brackets as a, b and c as $18x-{{x}^{2}}-77$ be a, ${{\log }_{3}}\left( 18x-{{x}^{2}}-77 \right)$ be b and ${{\log }_{5}}\left\{ {{\log }_{3}}\left( 18x-{{x}^{2}}-77 \right) \right\}$ be c. Then, by applying the condition for the domain of log function in the above assumed variables a, b and c, we get the final domain.
Complete step-by-step answer:
In this question, we are supposed to find the domain of the following function $f\left( x \right)={{\log }_{4}}\left[ {{\log }_{5}}\left\{ {{\log }_{3}}\left( 18x-{{x}^{2}}-77 \right) \right\} \right]$.
So, before proceeding for this, we must know the following fact for the logarithm function that the domain of the log function is always greater than zero.
So, the domain of log x is x > 0.
Now, we should assume all the following brackets as a, b and c:
So, let $18x-{{x}^{2}}-77$ be a.
Similarly, let ${{\log }_{3}}\left( 18x-{{x}^{2}}-77 \right)$ be b.
Also, let ${{\log }_{5}}\left\{ {{\log }_{3}}\left( 18x-{{x}^{2}}-77 \right) \right\}$ be c.
Now, by applying the condition for the domain of log function in the above assumed variables a, b and c.
Then, firstly applying it for the variable a as:
$\begin{align}
& a>0 \\
& \Rightarrow 18x-{{x}^{2}}-77>0 \\
& \Rightarrow \left( x-7 \right)\left( x-11 \right)<0 \\
& \Rightarrow x\in \left( 7,11 \right) \\
\end{align}$
Here, from the above condition we get x belongs to the range (7, 11) as:
Now, by applying the same condition for variable b as:
$\begin{align}
& b>0 \\
& \Rightarrow {{\log }_{3}}\left( a \right)>0 \\
& \Rightarrow a>{{3}^{0}} \\
& \Rightarrow a>1 \\
& \Rightarrow 18x-{{x}^{2}}-77>1 \\
& \Rightarrow 18x-{{x}^{2}}-78>0 \\
& \Rightarrow \left( -9-\sqrt{3}-x \right)\left( -9+\sqrt{3}+x \right)>0 \\
& \Rightarrow x\in \left( 9-\sqrt{3},9+\sqrt{3} \right) \\
\end{align}$
Here, from the above condition we get x belongs to the range $\left( 9-\sqrt{3},9+\sqrt{3} \right)$ as:
Now, by applying the same condition for variable c as:
$\begin{align}
& c>0 \\
& \Rightarrow {{\log }_{5}}\left( b \right)>0 \\
& \Rightarrow b>{{5}^{0}} \\
& \Rightarrow b>1 \\
& \Rightarrow {{\log }_{3}}\left( a \right)>1 \\
& \Rightarrow a>{{3}^{1}} \\
& \Rightarrow a>3 \\
& \Rightarrow 18x-{{x}^{2}}-77>3 \\
& \Rightarrow 18x-{{x}^{2}}-80>0 \\
& \Rightarrow \left( 8-x \right)\left( 10-x \right)>0 \\
& \Rightarrow x\in \left( 8,10 \right) \\
\end{align}$
Here, from the above condition we get x belongs to the range (8, 10) as:
So, the domain must satisfy every condition and finally we get the domain as (8, 10).
Hence, option (b) is correct.
Note: Now, to solve these types of the questions we need to know some of the basic rules of the log function so that these questions are done easily and accurately. So, the basic rules of the log function are:
domain of log x is only valid for x>0.
Value of Log1=0.
Complete step-by-step answer:
In this question, we are supposed to find the domain of the following function $f\left( x \right)={{\log }_{4}}\left[ {{\log }_{5}}\left\{ {{\log }_{3}}\left( 18x-{{x}^{2}}-77 \right) \right\} \right]$.
So, before proceeding for this, we must know the following fact for the logarithm function that the domain of the log function is always greater than zero.
So, the domain of log x is x > 0.
Now, we should assume all the following brackets as a, b and c:
So, let $18x-{{x}^{2}}-77$ be a.
Similarly, let ${{\log }_{3}}\left( 18x-{{x}^{2}}-77 \right)$ be b.
Also, let ${{\log }_{5}}\left\{ {{\log }_{3}}\left( 18x-{{x}^{2}}-77 \right) \right\}$ be c.
Now, by applying the condition for the domain of log function in the above assumed variables a, b and c.
Then, firstly applying it for the variable a as:
$\begin{align}
& a>0 \\
& \Rightarrow 18x-{{x}^{2}}-77>0 \\
& \Rightarrow \left( x-7 \right)\left( x-11 \right)<0 \\
& \Rightarrow x\in \left( 7,11 \right) \\
\end{align}$
Here, from the above condition we get x belongs to the range (7, 11) as:
Now, by applying the same condition for variable b as:
$\begin{align}
& b>0 \\
& \Rightarrow {{\log }_{3}}\left( a \right)>0 \\
& \Rightarrow a>{{3}^{0}} \\
& \Rightarrow a>1 \\
& \Rightarrow 18x-{{x}^{2}}-77>1 \\
& \Rightarrow 18x-{{x}^{2}}-78>0 \\
& \Rightarrow \left( -9-\sqrt{3}-x \right)\left( -9+\sqrt{3}+x \right)>0 \\
& \Rightarrow x\in \left( 9-\sqrt{3},9+\sqrt{3} \right) \\
\end{align}$
Here, from the above condition we get x belongs to the range $\left( 9-\sqrt{3},9+\sqrt{3} \right)$ as:
Now, by applying the same condition for variable c as:
$\begin{align}
& c>0 \\
& \Rightarrow {{\log }_{5}}\left( b \right)>0 \\
& \Rightarrow b>{{5}^{0}} \\
& \Rightarrow b>1 \\
& \Rightarrow {{\log }_{3}}\left( a \right)>1 \\
& \Rightarrow a>{{3}^{1}} \\
& \Rightarrow a>3 \\
& \Rightarrow 18x-{{x}^{2}}-77>3 \\
& \Rightarrow 18x-{{x}^{2}}-80>0 \\
& \Rightarrow \left( 8-x \right)\left( 10-x \right)>0 \\
& \Rightarrow x\in \left( 8,10 \right) \\
\end{align}$
Here, from the above condition we get x belongs to the range (8, 10) as:
So, the domain must satisfy every condition and finally we get the domain as (8, 10).
Hence, option (b) is correct.
Note: Now, to solve these types of the questions we need to know some of the basic rules of the log function so that these questions are done easily and accurately. So, the basic rules of the log function are:
domain of log x is only valid for x>0.
Value of Log1=0.
Recently Updated Pages
Master Class 12 Business Studies: Engaging Questions & Answers for Success

Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 English: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 12 Social Science: Engaging Questions & Answers for Success

Master Class 12 Chemistry: Engaging Questions & Answers for Success

Trending doubts
What is meant by exothermic and endothermic reactions class 11 chemistry CBSE

Which animal has three hearts class 11 biology CBSE

10 examples of friction in our daily life

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

1 Quintal is equal to a 110 kg b 10 kg c 100kg d 1000 class 11 physics CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells

