
Find the domain and range of $ tan ^{-1} x$ by plotting the graph.
Answer
513.3k+ views
Hint: In the simplest form domain is all the values that go into the function and range is all the functions that come out of it.
Complete step-by-step answer:
Let us define the domain and range of
y =tan x
The domain of the function y =tan x is
$x \in (-\dfrac{\pi}{2},\dfrac{\pi}{2})$
The range of the function y =tan x is
$ y \in (-\infty , +\infty )$
The function $ y= tan ^{-1} x$ is symmetric to the function y=tan x with respect the line y=x
Therefore, the domain is $ x \in (-\infty , +\infty )$
and the range is $y \in (-\dfrac{\pi}{2},\dfrac{\pi}{2})$
Now we can draw the graph of the function from the observation and discuss it.
This the graph for the $y= tan ^{-1} x$ function.
Since the inverse function is obtained by reflecting the graph about the line y=x ,
The vertical asymptotes of the tangent function become horizontal asymptotes of the inverse tangent function.
As $\theta$ approaches $\infty , tan ^{-1} \theta$ approaches $-\dfrac{\pi}{2} \,as\, \theta \Rightarrow \theta , tan ^{-1} \theta \Rightarrow \dfrac{\pi}{2}$
And by reflecting the function we get the graph of the function.
Note: In the first step students need to take this assumption y= tan x otherwise they would not be able to solve the problem. Also the students need to clearly understand the meaning of domain and range of a function to solve the problem.
Complete step-by-step answer:
Let us define the domain and range of
y =tan x
The domain of the function y =tan x is
$x \in (-\dfrac{\pi}{2},\dfrac{\pi}{2})$
The range of the function y =tan x is
$ y \in (-\infty , +\infty )$
The function $ y= tan ^{-1} x$ is symmetric to the function y=tan x with respect the line y=x
Therefore, the domain is $ x \in (-\infty , +\infty )$
and the range is $y \in (-\dfrac{\pi}{2},\dfrac{\pi}{2})$
Now we can draw the graph of the function from the observation and discuss it.

This the graph for the $y= tan ^{-1} x$ function.
Since the inverse function is obtained by reflecting the graph about the line y=x ,
The vertical asymptotes of the tangent function become horizontal asymptotes of the inverse tangent function.
As $\theta$ approaches $\infty , tan ^{-1} \theta$ approaches $-\dfrac{\pi}{2} \,as\, \theta \Rightarrow \theta , tan ^{-1} \theta \Rightarrow \dfrac{\pi}{2}$
And by reflecting the function we get the graph of the function.
Note: In the first step students need to take this assumption y= tan x otherwise they would not be able to solve the problem. Also the students need to clearly understand the meaning of domain and range of a function to solve the problem.
Recently Updated Pages
Master Class 11 Business Studies: Engaging Questions & Answers for Success

Master Class 11 Economics: Engaging Questions & Answers for Success

Master Class 11 Accountancy: Engaging Questions & Answers for Success

Master Class 11 Computer Science: Engaging Questions & Answers for Success

Master Class 11 Maths: Engaging Questions & Answers for Success

Master Class 11 English: Engaging Questions & Answers for Success

Trending doubts
Which one is a true fish A Jellyfish B Starfish C Dogfish class 11 biology CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells

1 ton equals to A 100 kg B 1000 kg C 10 kg D 10000 class 11 physics CBSE

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

1 Quintal is equal to a 110 kg b 10 kg c 100kg d 1000 class 11 physics CBSE

Net gain of ATP in glycolysis a 6 b 2 c 4 d 8 class 11 biology CBSE
