
Find the domain and range of $ tan ^{-1} x$ by plotting the graph.
Answer
588.9k+ views
Hint: In the simplest form domain is all the values that go into the function and range is all the functions that come out of it.
Complete step-by-step answer:
Let us define the domain and range of
y =tan x
The domain of the function y =tan x is
$x \in (-\dfrac{\pi}{2},\dfrac{\pi}{2})$
The range of the function y =tan x is
$ y \in (-\infty , +\infty )$
The function $ y= tan ^{-1} x$ is symmetric to the function y=tan x with respect the line y=x
Therefore, the domain is $ x \in (-\infty , +\infty )$
and the range is $y \in (-\dfrac{\pi}{2},\dfrac{\pi}{2})$
Now we can draw the graph of the function from the observation and discuss it.
This the graph for the $y= tan ^{-1} x$ function.
Since the inverse function is obtained by reflecting the graph about the line y=x ,
The vertical asymptotes of the tangent function become horizontal asymptotes of the inverse tangent function.
As $\theta$ approaches $\infty , tan ^{-1} \theta$ approaches $-\dfrac{\pi}{2} \,as\, \theta \Rightarrow \theta , tan ^{-1} \theta \Rightarrow \dfrac{\pi}{2}$
And by reflecting the function we get the graph of the function.
Note: In the first step students need to take this assumption y= tan x otherwise they would not be able to solve the problem. Also the students need to clearly understand the meaning of domain and range of a function to solve the problem.
Complete step-by-step answer:
Let us define the domain and range of
y =tan x
The domain of the function y =tan x is
$x \in (-\dfrac{\pi}{2},\dfrac{\pi}{2})$
The range of the function y =tan x is
$ y \in (-\infty , +\infty )$
The function $ y= tan ^{-1} x$ is symmetric to the function y=tan x with respect the line y=x
Therefore, the domain is $ x \in (-\infty , +\infty )$
and the range is $y \in (-\dfrac{\pi}{2},\dfrac{\pi}{2})$
Now we can draw the graph of the function from the observation and discuss it.
This the graph for the $y= tan ^{-1} x$ function.
Since the inverse function is obtained by reflecting the graph about the line y=x ,
The vertical asymptotes of the tangent function become horizontal asymptotes of the inverse tangent function.
As $\theta$ approaches $\infty , tan ^{-1} \theta$ approaches $-\dfrac{\pi}{2} \,as\, \theta \Rightarrow \theta , tan ^{-1} \theta \Rightarrow \dfrac{\pi}{2}$
And by reflecting the function we get the graph of the function.
Note: In the first step students need to take this assumption y= tan x otherwise they would not be able to solve the problem. Also the students need to clearly understand the meaning of domain and range of a function to solve the problem.
Recently Updated Pages
Master Class 11 English: Engaging Questions & Answers for Success

Master Class 11 Maths: Engaging Questions & Answers for Success

Master Class 11 Biology: Engaging Questions & Answers for Success

Master Class 11 Physics: Engaging Questions & Answers for Success

Master Class 11 Accountancy: Engaging Questions & Answers for Success

Class 11 Question and Answer - Your Ultimate Solutions Guide

Trending doubts
One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

Discuss the various forms of bacteria class 11 biology CBSE

Draw a diagram of a plant cell and label at least eight class 11 biology CBSE

State the laws of reflection of light

Explain zero factorial class 11 maths CBSE

10 examples of friction in our daily life

