
Find the derivative of $y$ w.r.t. $x$ where $ x = \dfrac{{1 - {t^2}}}{{1 + {t^2}}} $ and $ y = \dfrac{{2t}}{{1 + {t^2}}} $.
(a) $ - \dfrac{x}{y} $
(b) $ - \dfrac{y}{x} $
(c) 1
(d) None of the above
Answer
504.3k+ views
Hint: We will use the most eccentric concept of derivations. Considering the ‘ $ t $ ’ variable as a derivating agent or term the solution is solved by using certain rules of derivation such as $ \dfrac{d}{{dx}}{\left( x \right)^n} = n{x^{n - 1}} $ , etc. As a result, substituting the values in the equation $ \dfrac{{dy}}{{dx}} $ (after finding the derivatives of each given terms i.e. $ \dfrac{{dx}}{{dt}} $ and $ \dfrac{{dy}}{{dt}} $ respectively) one can easily solve the complete problem.
Complete step-by-step answer:
Since, we have the given equations that
$ x = \dfrac{{1 - {t^2}}}{{1 + {t^2}}} $ And $ y = \dfrac{{2t}}{{1 + {t^2}}} $
As a result, solving the given equations, first of all derivating the above given equations with respect to the ‘ $ t $ ’ variable, can reach up to a desire output,
Hence, derivating each term individually, we get
$ x = \dfrac{{1 - {t^2}}}{{1 + {t^2}}} = \dfrac{d}{{dt}}\left( {\dfrac{{1 - {t^2}}}{{1 + {t^2}}}} \right) $
Derivating the above equation with respect to ‘ $ t $ ’ by using laws of derivation for dividation i.e. $ \dfrac{d}{{dx}}\left( {\dfrac{{1 + x}}{{1 - x}}} \right) = \dfrac{{\left( {1 - x} \right)\dfrac{d}{{dx}}\left( {1 + x} \right) - \left( {1 + x} \right)\dfrac{d}{{dx}}\left( {1 - x} \right)}}{{{{\left( {1 - x} \right)}^2}}} $ respectively, we get,
\[\dfrac{{dx}}{{dt}} = \dfrac{d}{{dt}}\left( {\dfrac{{1 - {t^2}}}{{1 + {t^2}}}} \right) = \dfrac{{\left( {1 + {t^2}} \right)\dfrac{d}{{dt}}\left( {1 - {t^2}} \right) - \left( {1 - {t^2}} \right)\dfrac{d}{{dt}}\left( {1 + {t^2}} \right)}}{{{{\left( {1 + {t^2}} \right)}^2}}}\]
Using the rule of derivative/s that is $ \dfrac{d}{{dx}}{\left( x \right)^n} = n{x^{n - 1}} $ and $ \dfrac{d}{{dx}}\left( {{\text{constant}}} \right) = 0 $ we get
\[\dfrac{d}{{dt}}\left( {\dfrac{{1 - {t^2}}}{{1 + {t^2}}}} \right) = \dfrac{{\left( {1 + {t^2}} \right)\left( { - 2t} \right) - \left( {1 - {t^2}} \right)\left( {2t} \right)}}{{{{\left( {1 + {t^2}} \right)}^2}}}\]
Solving the equation mathematically, we get
\[
\dfrac{{dx}}{{dt}} = \dfrac{d}{{dt}}\left( {\dfrac{{1 - {t^2}}}{{1 + {t^2}}}} \right) = \dfrac{{ - 2t\left( {1 + {t^2} + 1 - {t^2}} \right)}}{{{{\left( {1 + {t^2}} \right)}^2}}} \\
\dfrac{d}{{dt}}\left( {\dfrac{{1 - {t^2}}}{{1 + {t^2}}}} \right) = \left( { - 2} \right)\left( {\dfrac{{2t}}{{1 + {t^2}}}} \right)\left( {\dfrac{1}{{1 + {t^2}}}} \right) \\
\] … (i)
Similarly, for
\[y = \dfrac{{2t}}{{1 + {t^2}}} = \dfrac{d}{{dt}}\left( {\dfrac{{2t}}{{1 + {t^2}}}} \right)\]
Derivating the above equation with respect to ‘ $ t $ ’ by using laws of derivation for dividation, we get,
\[\dfrac{{dy}}{{dt}} = \dfrac{d}{{dt}}\left( {\dfrac{{2t}}{{1 + {t^2}}}} \right) = \dfrac{{\left( {1 + {t^2}} \right)\dfrac{d}{{dt}}\left( {2t} \right) - \left( {2t} \right)\dfrac{d}{{dt}}\left( {1 + {t^2}} \right)}}{{{{\left( {1 + {t^2}} \right)}^2}}}\]
Using the rule of derivative/s that is $ \dfrac{d}{{dx}}{\left( x \right)^n} = n{x^{n - 1}} $ and $ \dfrac{d}{{dx}}\left( {{\text{constant}}} \right) = 0 $ we get
\[\dfrac{d}{{dt}}\left( {\dfrac{{2t}}{{1 + {t^2}}}} \right) = \dfrac{{\left( {1 + {t^2}} \right)\left( 2 \right) - \left( {2t} \right)\left( {2t} \right)}}{{{{\left( {1 + {t^2}} \right)}^2}}}\]
Solving the equation mathematically, we get
\[
\dfrac{d}{{dt}}\left( {\dfrac{{2t}}{{1 + {t^2}}}} \right) = \dfrac{{2 + 2{t^2} - 4{t^2}}}{{{{\left( {1 + {t^2}} \right)}^2}}} = \dfrac{{2 - 2{t^2}}}{{{{\left( {1 + {t^2}} \right)}^2}}} \\
\dfrac{d}{{dt}}\left( {\dfrac{{2t}}{{1 + {t^2}}}} \right) = \dfrac{{2\left( {{1^2} - {t^2}} \right)}}{{{{\left( {1 + {t^2}} \right)}^2}}} \\
\] … (ii)
Now, we know that
By definition of derivatives, it seems that
\[\dfrac{{dy}}{{dx}} = \dfrac{{\left( {\dfrac{{dy}}{{dt}}} \right)}}{{\left( {\dfrac{{dx}}{{dt}}} \right)}} = \dfrac{{dy}}{{dt}} \times \dfrac{{dt}}{{dx}}\]
As a result, from (i) and (ii),
Substituting all the values for the final solution i.e. \[\dfrac{{dx}}{{dt}} = \left( { - 2} \right)\left( {\dfrac{{2t}}{{1 + {t^2}}}} \right)\left( {\dfrac{1}{{1 + {t^2}}}} \right)\]and\[\dfrac{{dy}}{{dt}} = = \dfrac{{2\left( {{1^2} - {t^2}} \right)}}{{{{\left( {1 + {t^2}} \right)}^2}}}\], we get
\[\dfrac{{dy}}{{dx}} = \dfrac{{\left[ {\dfrac{{2\left( {{1^2} - {t^2}} \right)}}{{{{\left( {1 + {t^2}} \right)}^2}}}} \right]}}{{\left[ {\left( { - 2} \right)\left( {\dfrac{{2t}}{{1 + {t^2}}}} \right)\left( {\dfrac{1}{{1 + {t^2}}}} \right)} \right]}}\]
Solving the equation mathematically, we get
\[\dfrac{{dy}}{{dx}} = \dfrac{{\dfrac{{2\left( {1 - {t^2}} \right)}}{{\left( {1 + {t^2}} \right)}}}}{{\left( { - 2} \right)\left( {\dfrac{{2t}}{{1 + {t^2}}}} \right)}}\]
Now, since we know that the given equation in terms of ‘ $ x $ ’ and ‘ $ y $ ’ respectively are
As a result, substituting $ x = \dfrac{{1 - {t^2}}}{{1 + {t^2}}} $ and $ y = \dfrac{{2t}}{{1 + {t^2}}} $ in the above equation, we get
\[
\dfrac{{dy}}{{dx}} = \dfrac{{2x}}{{\left( { - 2} \right)y}} \\
\therefore \dfrac{{dy}}{{dx}} = - \dfrac{x}{y} \\
\]
Therefore, the option (a) is correct!
So, the correct answer is “Option a”.
Note: One must remember the concept of derivation, how to differentiate the equation with respect to which variable, etc.? Also, laws of derivation such as $ \dfrac{d}{{dx}}\left( {\dfrac{{1 + x}}{{1 - x}}} \right) = \dfrac{{\left( {1 - x} \right)\dfrac{d}{{dx}}\left( {1 + x} \right) - \left( {1 + x} \right)\dfrac{d}{{dx}}\left( {1 - x} \right)}}{{{{\left( {1 - x} \right)}^2}}} $ is the rule of derivation used here. Derivation of any constant number is always zero. Deriving the equation with the same term is always one $ \dfrac{d}{{dx}}(x) = 1 $. Algebraic identities play a significant role in solving this problem.
Complete step-by-step answer:
Since, we have the given equations that
$ x = \dfrac{{1 - {t^2}}}{{1 + {t^2}}} $ And $ y = \dfrac{{2t}}{{1 + {t^2}}} $
As a result, solving the given equations, first of all derivating the above given equations with respect to the ‘ $ t $ ’ variable, can reach up to a desire output,
Hence, derivating each term individually, we get
$ x = \dfrac{{1 - {t^2}}}{{1 + {t^2}}} = \dfrac{d}{{dt}}\left( {\dfrac{{1 - {t^2}}}{{1 + {t^2}}}} \right) $
Derivating the above equation with respect to ‘ $ t $ ’ by using laws of derivation for dividation i.e. $ \dfrac{d}{{dx}}\left( {\dfrac{{1 + x}}{{1 - x}}} \right) = \dfrac{{\left( {1 - x} \right)\dfrac{d}{{dx}}\left( {1 + x} \right) - \left( {1 + x} \right)\dfrac{d}{{dx}}\left( {1 - x} \right)}}{{{{\left( {1 - x} \right)}^2}}} $ respectively, we get,
\[\dfrac{{dx}}{{dt}} = \dfrac{d}{{dt}}\left( {\dfrac{{1 - {t^2}}}{{1 + {t^2}}}} \right) = \dfrac{{\left( {1 + {t^2}} \right)\dfrac{d}{{dt}}\left( {1 - {t^2}} \right) - \left( {1 - {t^2}} \right)\dfrac{d}{{dt}}\left( {1 + {t^2}} \right)}}{{{{\left( {1 + {t^2}} \right)}^2}}}\]
Using the rule of derivative/s that is $ \dfrac{d}{{dx}}{\left( x \right)^n} = n{x^{n - 1}} $ and $ \dfrac{d}{{dx}}\left( {{\text{constant}}} \right) = 0 $ we get
\[\dfrac{d}{{dt}}\left( {\dfrac{{1 - {t^2}}}{{1 + {t^2}}}} \right) = \dfrac{{\left( {1 + {t^2}} \right)\left( { - 2t} \right) - \left( {1 - {t^2}} \right)\left( {2t} \right)}}{{{{\left( {1 + {t^2}} \right)}^2}}}\]
Solving the equation mathematically, we get
\[
\dfrac{{dx}}{{dt}} = \dfrac{d}{{dt}}\left( {\dfrac{{1 - {t^2}}}{{1 + {t^2}}}} \right) = \dfrac{{ - 2t\left( {1 + {t^2} + 1 - {t^2}} \right)}}{{{{\left( {1 + {t^2}} \right)}^2}}} \\
\dfrac{d}{{dt}}\left( {\dfrac{{1 - {t^2}}}{{1 + {t^2}}}} \right) = \left( { - 2} \right)\left( {\dfrac{{2t}}{{1 + {t^2}}}} \right)\left( {\dfrac{1}{{1 + {t^2}}}} \right) \\
\] … (i)
Similarly, for
\[y = \dfrac{{2t}}{{1 + {t^2}}} = \dfrac{d}{{dt}}\left( {\dfrac{{2t}}{{1 + {t^2}}}} \right)\]
Derivating the above equation with respect to ‘ $ t $ ’ by using laws of derivation for dividation, we get,
\[\dfrac{{dy}}{{dt}} = \dfrac{d}{{dt}}\left( {\dfrac{{2t}}{{1 + {t^2}}}} \right) = \dfrac{{\left( {1 + {t^2}} \right)\dfrac{d}{{dt}}\left( {2t} \right) - \left( {2t} \right)\dfrac{d}{{dt}}\left( {1 + {t^2}} \right)}}{{{{\left( {1 + {t^2}} \right)}^2}}}\]
Using the rule of derivative/s that is $ \dfrac{d}{{dx}}{\left( x \right)^n} = n{x^{n - 1}} $ and $ \dfrac{d}{{dx}}\left( {{\text{constant}}} \right) = 0 $ we get
\[\dfrac{d}{{dt}}\left( {\dfrac{{2t}}{{1 + {t^2}}}} \right) = \dfrac{{\left( {1 + {t^2}} \right)\left( 2 \right) - \left( {2t} \right)\left( {2t} \right)}}{{{{\left( {1 + {t^2}} \right)}^2}}}\]
Solving the equation mathematically, we get
\[
\dfrac{d}{{dt}}\left( {\dfrac{{2t}}{{1 + {t^2}}}} \right) = \dfrac{{2 + 2{t^2} - 4{t^2}}}{{{{\left( {1 + {t^2}} \right)}^2}}} = \dfrac{{2 - 2{t^2}}}{{{{\left( {1 + {t^2}} \right)}^2}}} \\
\dfrac{d}{{dt}}\left( {\dfrac{{2t}}{{1 + {t^2}}}} \right) = \dfrac{{2\left( {{1^2} - {t^2}} \right)}}{{{{\left( {1 + {t^2}} \right)}^2}}} \\
\] … (ii)
Now, we know that
By definition of derivatives, it seems that
\[\dfrac{{dy}}{{dx}} = \dfrac{{\left( {\dfrac{{dy}}{{dt}}} \right)}}{{\left( {\dfrac{{dx}}{{dt}}} \right)}} = \dfrac{{dy}}{{dt}} \times \dfrac{{dt}}{{dx}}\]
As a result, from (i) and (ii),
Substituting all the values for the final solution i.e. \[\dfrac{{dx}}{{dt}} = \left( { - 2} \right)\left( {\dfrac{{2t}}{{1 + {t^2}}}} \right)\left( {\dfrac{1}{{1 + {t^2}}}} \right)\]and\[\dfrac{{dy}}{{dt}} = = \dfrac{{2\left( {{1^2} - {t^2}} \right)}}{{{{\left( {1 + {t^2}} \right)}^2}}}\], we get
\[\dfrac{{dy}}{{dx}} = \dfrac{{\left[ {\dfrac{{2\left( {{1^2} - {t^2}} \right)}}{{{{\left( {1 + {t^2}} \right)}^2}}}} \right]}}{{\left[ {\left( { - 2} \right)\left( {\dfrac{{2t}}{{1 + {t^2}}}} \right)\left( {\dfrac{1}{{1 + {t^2}}}} \right)} \right]}}\]
Solving the equation mathematically, we get
\[\dfrac{{dy}}{{dx}} = \dfrac{{\dfrac{{2\left( {1 - {t^2}} \right)}}{{\left( {1 + {t^2}} \right)}}}}{{\left( { - 2} \right)\left( {\dfrac{{2t}}{{1 + {t^2}}}} \right)}}\]
Now, since we know that the given equation in terms of ‘ $ x $ ’ and ‘ $ y $ ’ respectively are
As a result, substituting $ x = \dfrac{{1 - {t^2}}}{{1 + {t^2}}} $ and $ y = \dfrac{{2t}}{{1 + {t^2}}} $ in the above equation, we get
\[
\dfrac{{dy}}{{dx}} = \dfrac{{2x}}{{\left( { - 2} \right)y}} \\
\therefore \dfrac{{dy}}{{dx}} = - \dfrac{x}{y} \\
\]
Therefore, the option (a) is correct!
So, the correct answer is “Option a”.
Note: One must remember the concept of derivation, how to differentiate the equation with respect to which variable, etc.? Also, laws of derivation such as $ \dfrac{d}{{dx}}\left( {\dfrac{{1 + x}}{{1 - x}}} \right) = \dfrac{{\left( {1 - x} \right)\dfrac{d}{{dx}}\left( {1 + x} \right) - \left( {1 + x} \right)\dfrac{d}{{dx}}\left( {1 - x} \right)}}{{{{\left( {1 - x} \right)}^2}}} $ is the rule of derivation used here. Derivation of any constant number is always zero. Deriving the equation with the same term is always one $ \dfrac{d}{{dx}}(x) = 1 $. Algebraic identities play a significant role in solving this problem.
Recently Updated Pages
Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 Physics: Engaging Questions & Answers for Success

Master Class 12 English: Engaging Questions & Answers for Success

Master Class 12 Social Science: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 12 Business Studies: Engaging Questions & Answers for Success

Trending doubts
Which are the Top 10 Largest Countries of the World?

What are the major means of transport Explain each class 12 social science CBSE

Draw a labelled sketch of the human eye class 12 physics CBSE

Why cannot DNA pass through cell membranes class 12 biology CBSE

Differentiate between insitu conservation and exsitu class 12 biology CBSE

Draw a neat and well labeled diagram of TS of ovary class 12 biology CBSE

