
Find the derivative of the following functions ( it is to be understand that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers ): \[\left( px+q \right)\left( \dfrac{r}{x}+s \right)\]
Answer
521.4k+ views
Hint: First of all, let us assume the given function as f(x). Now we will write coefficients of x at one side, coefficient of \[\left( \dfrac{1}{x} \right)\] at one side and constants at other side. Let us assume this equation as equation (1). Now we will differentiate equation (1) with x. Let us assume this function as\[{f}'(x)\].
This will give the derivative of the given function.
Complete step by step answer:
Before solving the problem, let us assume the given function \[\left( px+q \right)\left( \dfrac{r}{x}+s \right)\] as f(x) where a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers.
\[\Rightarrow f(x)=\left( px+q \right)\left( \dfrac{r}{x}+s \right)\]
Now by multiplication on R.H.S, we get
\[\begin{align}
& \Rightarrow f(x)=(px+q)\left( \dfrac{r}{x} \right)+\left( px+q \right)(s) \\
& \Rightarrow f(x)=pr+\dfrac{qr}{x}+psx+qs \\
& \Rightarrow f(x)=psx+\dfrac{qr}{x}+\left( pr+qs \right)...(1) \\
\end{align}\]
Now we will differentiate equation (1) with x on both sides.
We also know that the differentiation of constant is equal to zero.
\[\begin{align}
& \Rightarrow {f}'(x)=\dfrac{d}{dx}\left( psx+\dfrac{qr}{x}+\left( pr+qs \right) \right) \\
& \Rightarrow {f}'(x)=\dfrac{d}{dx}(psx)+\dfrac{d}{dx}\left( \dfrac{qr}{x} \right)+\dfrac{d}{dx}(pr+qs) \\
& \Rightarrow {f}'(x)=ps\dfrac{d}{dx}(x)+(qr)\dfrac{d}{dx}\left( \dfrac{1}{x} \right) \\
\end{align}\]
We know that \[\dfrac{d}{dx}({{x}^{n}})=n{{x}^{n-1}}\]
\[\begin{align}
& \Rightarrow {f}'(x)=ps(1)+(qr)\left( \dfrac{-1}{{{x}^{2}}} \right) \\
& \Rightarrow {f}'(x)=ps-\dfrac{qr}{{{x}^{2}}}....(2) \\
& \\
\end{align}\]
So, the derivative of \[\left( px+q \right)\left( \dfrac{r}{x}+s \right)\] is equal to \[ps-\dfrac{qr}{{{x}^{2}}}\].
Note:
This problem can be solved in an alternative method. Let us assume f(x) as \[\left( px+q \right)\left( \dfrac{r}{x}+s \right)\]. Now we have to find derivative of f(x). Let the derivative of f(x) as \[{f}'(x)\].
\[\Rightarrow f(x)=\left( px+q \right)\left( \dfrac{r}{x}+s \right)\]
Let us assume \[\left( px+q \right)\] as u and \[\left( \dfrac{r}{x}+s \right)\] as v. We know that \[\dfrac{d}{dx}(uv)=u\dfrac{dv}{dx}+v\dfrac{du}{dx}\]
So, we get
\[\begin{align}
& \Rightarrow {{f}^{|}}(x)=\left( \dfrac{r}{x}+s \right)\dfrac{d}{dx}(px+q)+\left( px+q \right)\dfrac{d}{dx}\left( \dfrac{r}{x}+s \right) \\
& \Rightarrow {{f}^{|}}(x)=\left( \dfrac{r}{x}+s \right)(p)+(px+q)\left( \dfrac{-r}{{{x}^{2}}} \right) \\
& \Rightarrow {{f}^{|}}(x)=ps-\dfrac{qr}{{{x}^{2}}} \\
\end{align}\]
Hence, the derivative of \[\left( px+q \right)\left( \dfrac{r}{x}+s \right)\] is equal to \[ps-\dfrac{qr}{{{x}^{2}}}\].
This will give the derivative of the given function.
Complete step by step answer:
Before solving the problem, let us assume the given function \[\left( px+q \right)\left( \dfrac{r}{x}+s \right)\] as f(x) where a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers.
\[\Rightarrow f(x)=\left( px+q \right)\left( \dfrac{r}{x}+s \right)\]
Now by multiplication on R.H.S, we get
\[\begin{align}
& \Rightarrow f(x)=(px+q)\left( \dfrac{r}{x} \right)+\left( px+q \right)(s) \\
& \Rightarrow f(x)=pr+\dfrac{qr}{x}+psx+qs \\
& \Rightarrow f(x)=psx+\dfrac{qr}{x}+\left( pr+qs \right)...(1) \\
\end{align}\]
Now we will differentiate equation (1) with x on both sides.
We also know that the differentiation of constant is equal to zero.
\[\begin{align}
& \Rightarrow {f}'(x)=\dfrac{d}{dx}\left( psx+\dfrac{qr}{x}+\left( pr+qs \right) \right) \\
& \Rightarrow {f}'(x)=\dfrac{d}{dx}(psx)+\dfrac{d}{dx}\left( \dfrac{qr}{x} \right)+\dfrac{d}{dx}(pr+qs) \\
& \Rightarrow {f}'(x)=ps\dfrac{d}{dx}(x)+(qr)\dfrac{d}{dx}\left( \dfrac{1}{x} \right) \\
\end{align}\]
We know that \[\dfrac{d}{dx}({{x}^{n}})=n{{x}^{n-1}}\]
\[\begin{align}
& \Rightarrow {f}'(x)=ps(1)+(qr)\left( \dfrac{-1}{{{x}^{2}}} \right) \\
& \Rightarrow {f}'(x)=ps-\dfrac{qr}{{{x}^{2}}}....(2) \\
& \\
\end{align}\]
So, the derivative of \[\left( px+q \right)\left( \dfrac{r}{x}+s \right)\] is equal to \[ps-\dfrac{qr}{{{x}^{2}}}\].
Note:
This problem can be solved in an alternative method. Let us assume f(x) as \[\left( px+q \right)\left( \dfrac{r}{x}+s \right)\]. Now we have to find derivative of f(x). Let the derivative of f(x) as \[{f}'(x)\].
\[\Rightarrow f(x)=\left( px+q \right)\left( \dfrac{r}{x}+s \right)\]
Let us assume \[\left( px+q \right)\] as u and \[\left( \dfrac{r}{x}+s \right)\] as v. We know that \[\dfrac{d}{dx}(uv)=u\dfrac{dv}{dx}+v\dfrac{du}{dx}\]
So, we get
\[\begin{align}
& \Rightarrow {{f}^{|}}(x)=\left( \dfrac{r}{x}+s \right)\dfrac{d}{dx}(px+q)+\left( px+q \right)\dfrac{d}{dx}\left( \dfrac{r}{x}+s \right) \\
& \Rightarrow {{f}^{|}}(x)=\left( \dfrac{r}{x}+s \right)(p)+(px+q)\left( \dfrac{-r}{{{x}^{2}}} \right) \\
& \Rightarrow {{f}^{|}}(x)=ps-\dfrac{qr}{{{x}^{2}}} \\
\end{align}\]
Hence, the derivative of \[\left( px+q \right)\left( \dfrac{r}{x}+s \right)\] is equal to \[ps-\dfrac{qr}{{{x}^{2}}}\].
Recently Updated Pages
Master Class 10 English: Engaging Questions & Answers for Success

Master Class 10 Social Science: Engaging Questions & Answers for Success

Master Class 10 Maths: Engaging Questions & Answers for Success

Master Class 10 Science: Engaging Questions & Answers for Success

Class 10 Question and Answer - Your Ultimate Solutions Guide

Master Class 10 Computer Science: Engaging Questions & Answers for Success

Trending doubts
When and how did Canada eventually gain its independence class 10 social science CBSE

Write examples of herbivores carnivores and omnivo class 10 biology CBSE

Which planet is known as the Watery Planet AJupiter class 10 social science CBSE

Give 10 examples of Material nouns Abstract nouns Common class 10 english CBSE

Change the following sentences into negative and interrogative class 10 english CBSE

Who administers the oath of office to the President class 10 social science CBSE
