
Find the derivative of the following \[y=x\sqrt{\dfrac{1-x}{1+{{x}^{2}}}}\].
Answer
613.5k+ views
Hint: To solve this type of question we have to use these two following formulas:
\[\dfrac{d(u.v)}{dx}=uv'+vu'\] and \[\dfrac{d}{dx}(\dfrac{u}{v})=\dfrac{v.{{u}^{'}}-u.v'}{{{v}^{2}}}\].
Complete step-by-step answer:
The given function is of the form \[y=f(x).g(x)\] where \[f(x)=x\] and \[g(x)=\sqrt{\dfrac{1-x}{1+{{x}^{2}}}}\].
To find the derivative of \[y\] , we will apply the product rule of differentiation.
Now , we know , the product rule of differentiation is given as
\[y'=\dfrac{d}{dx}(f(x).g(x))=g(x).{{f}^{'}}(x)+f(x).{{g}^{'}}(x)\]
Now , to calculate the value of \[y'\] , first we need to find the value of \[{{f}^{'}}(x)\]and \[{{g}^{'}}(x)\].
We have \[f(x)=x\]
So , on differentiating \[f(x)\] with respect to \[x\] , we get ,
\[{{f}^{'}}(x)=\dfrac{d}{dx}(x)=1\].
Again , we have \[g(x)=\sqrt{\dfrac{1-x}{1+{{x}^{2}}}}\].
Now , let \[\dfrac{1-x}{1+{{x}^{2}}}=p(x)\].
So , \[g(x)=\sqrt{p(x)}\]
Now , \[\because g(x)\] is a composite function , we will apply chain rule of differentiation. The chain rule of differentiation is given as: “If \[h(x)\] is a composite function given by \[h(x)=f(g(x))\] , then\[h'(x)=f'(g(x))\times g'(x)\].”
So , \[{{g}^{'}}(x)=\dfrac{1}{2\sqrt{p(x)}}.{{p}^{'}}(x)\].
Now , we will find \[{{p}^{'}}(x)\].
For this we will use the quotient rule , which is given as
\[\dfrac{d}{dx}(\dfrac{u}{v})=\dfrac{v.{{u}^{'}}-u.v'}{{{v}^{2}}}\]
In \[p(x)\] , we have \[u=(1-x)\] and \[v=(1+{x^2})\] .
So , we get \[p'(x)=\dfrac{[-1\times (1+{{x}^{2}})]-[(1-x)\times 2x]}{{{(1+{{x}^{2}})}^{2}}}\]
\[=\dfrac{-1-{{x}^{2}}-2x+2{{x}^{2}}}{{{(1+{{x}^{2}})}^{2}}}\]
\[=\dfrac{{{x}^{2}}-2x-1}{{{(1+{{x}^{2}})}^{2}}}\]
Now , we will substitute the value of \[{{p}^{'}}(x)\] in \[{{g}^{'}}(x)\].
On substituting the value of \[{{p}^{'}}(x)\] in \[{{g}^{'}}(x)\] we get,
\[{{g}^{'}}(x)=\dfrac{1}{2\sqrt{\dfrac{1-x}{1+{{x}^{2}}}}}.\dfrac{{{x}^{2}}-2x-1}{{{(1+{{x}^{2}})}^{2}}}\]
\[=\dfrac{\sqrt{1+{{x}^{2}}}}{2\sqrt{1-x}}.\dfrac{{{x}^{2}}-2x-1}{{{(1+{{x}^{2}})}^{2}}}\]
\[=\dfrac{{{x}^{2}}-2x-1}{2{{(1-x)}^{\dfrac{1}{2}}}{{(1+{{x}^{2}})}^{\dfrac{3}{2}}}}\]
Now , we will substitute the values of \[{{g}^{'}}(x)\] and \[{{f}^{'}}(x)\] in \[{{y}^{'}}\].
On substituting the values of \[{{g}^{'}}(x)\] and \[{{f}^{'}}(x)\] in \[{{y}^{'}}\] , we get ,
\[{{y}^{'}}=[1\times \sqrt{\dfrac{1-x}{1+{{x}^{2}}}}]+x\times \dfrac{{{x}^{2}}-2x-1}{(2){{(1-x)}^{\dfrac{1}{2}}}{{(1+{{x}^{2}})}^{\dfrac{3}{2}}}}\]
Now , we will take the LCM of the denominators.
On taking LCM of the denominators , we get ,
\[y'=\dfrac{2{{(1-x)}^{\dfrac{1}{2}}}\sqrt{1-x}.(1+{{x}^{2}})}{2{{(1-x)}^{\dfrac{1}{2}}}\sqrt{1+{{x}^{2}}}.(1+{{x}^{2}})}+\dfrac{x({{x}^{2}}-2x-1)}{2{{(1-x)}^{\dfrac{1}{2}}}{{(1+{{x}^{2}})}^{\dfrac{3}{2}}}}\]
\[=\dfrac{2(1-x)(1+{{x}^{2}})+({{x}^{3}}-2{{x}^{2}}-x)}{2\sqrt{(1-x){{(1+{{x}^{2}})}^{3}}}}\]
\[=\dfrac{2(1+{{x}^{2}}-x-{{x}^{3}})+({{x}^{3}}-2{{x}^{2}}-x)}{2\sqrt{(1-x)}{{(1+{{x}^{2}})}^{\dfrac{3}{2}}}}\]
\[=\dfrac{2+2{{x}^{2}}-2x-2{{x}^{3}}+{{x}^{3}}-2{{x}^{2}}-x}{2\sqrt{(1-x)}.{{(1+{{x}^{2}})}^{\dfrac{3}{2}}}}\]
\[=\dfrac{-{{x}^{3}}-3x+2}{2\sqrt{(1-x)}.{{(1+{{x}^{2}})}^{\dfrac{3}{2}}}}\]
Hence, the derivative of \[y\] is given as \[y'=\dfrac{-{{x}^{3}}-3x+2}{2\sqrt{(1-x)}.{{(1+{{x}^{2}})}^{\dfrac{3}{2}}}}\].
Note: Since \[g(x)\] is a composite function , \[{{g}^{'}}(x)=\dfrac{1}{2\sqrt{p(x)}}.{{p}^{'}}(x)\].
Most of the students generally consider \[g(x)\]as a normal function and write \[{{g}^{'}}(x)=\dfrac{1}{2\sqrt{p(x)}}\] , which is wrong. This will result in the wrong calculation of \[y'\]. Hence such mistakes should be avoided.
\[\dfrac{d(u.v)}{dx}=uv'+vu'\] and \[\dfrac{d}{dx}(\dfrac{u}{v})=\dfrac{v.{{u}^{'}}-u.v'}{{{v}^{2}}}\].
Complete step-by-step answer:
The given function is of the form \[y=f(x).g(x)\] where \[f(x)=x\] and \[g(x)=\sqrt{\dfrac{1-x}{1+{{x}^{2}}}}\].
To find the derivative of \[y\] , we will apply the product rule of differentiation.
Now , we know , the product rule of differentiation is given as
\[y'=\dfrac{d}{dx}(f(x).g(x))=g(x).{{f}^{'}}(x)+f(x).{{g}^{'}}(x)\]
Now , to calculate the value of \[y'\] , first we need to find the value of \[{{f}^{'}}(x)\]and \[{{g}^{'}}(x)\].
We have \[f(x)=x\]
So , on differentiating \[f(x)\] with respect to \[x\] , we get ,
\[{{f}^{'}}(x)=\dfrac{d}{dx}(x)=1\].
Again , we have \[g(x)=\sqrt{\dfrac{1-x}{1+{{x}^{2}}}}\].
Now , let \[\dfrac{1-x}{1+{{x}^{2}}}=p(x)\].
So , \[g(x)=\sqrt{p(x)}\]
Now , \[\because g(x)\] is a composite function , we will apply chain rule of differentiation. The chain rule of differentiation is given as: “If \[h(x)\] is a composite function given by \[h(x)=f(g(x))\] , then\[h'(x)=f'(g(x))\times g'(x)\].”
So , \[{{g}^{'}}(x)=\dfrac{1}{2\sqrt{p(x)}}.{{p}^{'}}(x)\].
Now , we will find \[{{p}^{'}}(x)\].
For this we will use the quotient rule , which is given as
\[\dfrac{d}{dx}(\dfrac{u}{v})=\dfrac{v.{{u}^{'}}-u.v'}{{{v}^{2}}}\]
In \[p(x)\] , we have \[u=(1-x)\] and \[v=(1+{x^2})\] .
So , we get \[p'(x)=\dfrac{[-1\times (1+{{x}^{2}})]-[(1-x)\times 2x]}{{{(1+{{x}^{2}})}^{2}}}\]
\[=\dfrac{-1-{{x}^{2}}-2x+2{{x}^{2}}}{{{(1+{{x}^{2}})}^{2}}}\]
\[=\dfrac{{{x}^{2}}-2x-1}{{{(1+{{x}^{2}})}^{2}}}\]
Now , we will substitute the value of \[{{p}^{'}}(x)\] in \[{{g}^{'}}(x)\].
On substituting the value of \[{{p}^{'}}(x)\] in \[{{g}^{'}}(x)\] we get,
\[{{g}^{'}}(x)=\dfrac{1}{2\sqrt{\dfrac{1-x}{1+{{x}^{2}}}}}.\dfrac{{{x}^{2}}-2x-1}{{{(1+{{x}^{2}})}^{2}}}\]
\[=\dfrac{\sqrt{1+{{x}^{2}}}}{2\sqrt{1-x}}.\dfrac{{{x}^{2}}-2x-1}{{{(1+{{x}^{2}})}^{2}}}\]
\[=\dfrac{{{x}^{2}}-2x-1}{2{{(1-x)}^{\dfrac{1}{2}}}{{(1+{{x}^{2}})}^{\dfrac{3}{2}}}}\]
Now , we will substitute the values of \[{{g}^{'}}(x)\] and \[{{f}^{'}}(x)\] in \[{{y}^{'}}\].
On substituting the values of \[{{g}^{'}}(x)\] and \[{{f}^{'}}(x)\] in \[{{y}^{'}}\] , we get ,
\[{{y}^{'}}=[1\times \sqrt{\dfrac{1-x}{1+{{x}^{2}}}}]+x\times \dfrac{{{x}^{2}}-2x-1}{(2){{(1-x)}^{\dfrac{1}{2}}}{{(1+{{x}^{2}})}^{\dfrac{3}{2}}}}\]
Now , we will take the LCM of the denominators.
On taking LCM of the denominators , we get ,
\[y'=\dfrac{2{{(1-x)}^{\dfrac{1}{2}}}\sqrt{1-x}.(1+{{x}^{2}})}{2{{(1-x)}^{\dfrac{1}{2}}}\sqrt{1+{{x}^{2}}}.(1+{{x}^{2}})}+\dfrac{x({{x}^{2}}-2x-1)}{2{{(1-x)}^{\dfrac{1}{2}}}{{(1+{{x}^{2}})}^{\dfrac{3}{2}}}}\]
\[=\dfrac{2(1-x)(1+{{x}^{2}})+({{x}^{3}}-2{{x}^{2}}-x)}{2\sqrt{(1-x){{(1+{{x}^{2}})}^{3}}}}\]
\[=\dfrac{2(1+{{x}^{2}}-x-{{x}^{3}})+({{x}^{3}}-2{{x}^{2}}-x)}{2\sqrt{(1-x)}{{(1+{{x}^{2}})}^{\dfrac{3}{2}}}}\]
\[=\dfrac{2+2{{x}^{2}}-2x-2{{x}^{3}}+{{x}^{3}}-2{{x}^{2}}-x}{2\sqrt{(1-x)}.{{(1+{{x}^{2}})}^{\dfrac{3}{2}}}}\]
\[=\dfrac{-{{x}^{3}}-3x+2}{2\sqrt{(1-x)}.{{(1+{{x}^{2}})}^{\dfrac{3}{2}}}}\]
Hence, the derivative of \[y\] is given as \[y'=\dfrac{-{{x}^{3}}-3x+2}{2\sqrt{(1-x)}.{{(1+{{x}^{2}})}^{\dfrac{3}{2}}}}\].
Note: Since \[g(x)\] is a composite function , \[{{g}^{'}}(x)=\dfrac{1}{2\sqrt{p(x)}}.{{p}^{'}}(x)\].
Most of the students generally consider \[g(x)\]as a normal function and write \[{{g}^{'}}(x)=\dfrac{1}{2\sqrt{p(x)}}\] , which is wrong. This will result in the wrong calculation of \[y'\]. Hence such mistakes should be avoided.
Recently Updated Pages
Master Class 11 Computer Science: Engaging Questions & Answers for Success

Master Class 11 Business Studies: Engaging Questions & Answers for Success

Master Class 11 Economics: Engaging Questions & Answers for Success

Master Class 11 English: Engaging Questions & Answers for Success

Master Class 11 Maths: Engaging Questions & Answers for Success

Master Class 11 Biology: Engaging Questions & Answers for Success

Trending doubts
There are 720 permutations of the digits 1 2 3 4 5 class 11 maths CBSE

Discuss the various forms of bacteria class 11 biology CBSE

Draw a diagram of a plant cell and label at least eight class 11 biology CBSE

Explain zero factorial class 11 maths CBSE

What organs are located on the left side of your body class 11 biology CBSE

Draw a diagram of nephron and explain its structur class 11 biology CBSE

