
Find the derivative of \[\dfrac{\sqrt{x}{{\left( x+4 \right)}^{\dfrac{3}{2}}}}{{{\left( 4x-3 \right)}^{\dfrac{4}{3}}}}\]with respect to \[x\].
Answer
618.6k+ views
Hint: We use the product rule to define the derivative of product of two or more than two functions as \[\dfrac{d}{dx}\left( f(x).g(x) \right)={{f}^{'}}(x).g(x)+{{g}^{'}}(x).f(x)\] and quotient rule to define the derivative of two functions like \[\dfrac{d}{dx}\left( \dfrac{u}{v} \right)=\dfrac{v{{u}^{'}}-u{{v}^{'}}}{{{v}^{2}}}\].
Complete step-by-step solution -
The given function is\[\dfrac{\sqrt{x}{{\left( x+4 \right)}^{\dfrac{3}{2}}}}{{{\left( 4x-3 \right)}^{\dfrac{4}{3}}}}\]
Clearly , it is of the type \[\dfrac{f(x).g(x)}{h(x)}\]where \[f(x)=\sqrt{x};g(x)={{\left( x+4 \right)}^{\dfrac{3}{2}}}\]and \[h(x)={{\left( 4x-3 \right)}^{\dfrac{4}{3}}}\]
Now to find its derivative , first we will find the expression for the derivative of the numerator. It will be helpful while applying quotient rules to find the derivative of the entire function .
To find the derivative of the numerator , we will apply the product rule of differentiation . We know , the product rule of differentiation is given as \[\dfrac{d}{dx}\left( f(x).g(x) \right)={{f}^{'}}(x).g(x)+{{g}^{'}}(x).f(x)\]
So, we will differentiate the numerator with respect to \[x\] using the product rule of differentiation .
On differentiating the numerator with respect to \[x\], we get ,
\[\dfrac{d}{dx}\left( \sqrt{x}{{\left( x+4 \right)}^{\dfrac{3}{2}}} \right)=\dfrac{1}{2\sqrt{x}}{{\left( x+4 \right)}^{\dfrac{3}{2}}}+\dfrac{3}{2}{{\left( x+4 \right)}^{\dfrac{1}{2}}}.{{x}^{\dfrac{1}{2}}}\]
\[={{\left( x+4 \right)}^{\dfrac{1}{2}}}\left[ \dfrac{x+4}{2\sqrt{x}}+\dfrac{3}{2}\sqrt{x} \right]\]
\[={{\left( x+4 \right)}^{\dfrac{1}{2}}}\left[ \dfrac{x+4+3x}{2\sqrt{x}} \right]\]
\[={{\left( x+4 \right)}^{\dfrac{1}{2}}}\left[ \dfrac{4x+4}{2\sqrt{x}} \right]\]
\[={{\left( x+4 \right)}^{\dfrac{1}{2}}}\left[ \dfrac{2x+2}{\sqrt{x}} \right]\]
Now, we will differentiate the entire function with respect to \[x\]. To differentiate the entire function , we will apply the quotient rule of differentiation. For that , first we must know the quotient rule of differentiation. The quotient rule for differentiation is given as \[\dfrac{d}{dx}\left( \dfrac{u}{v} \right)=\dfrac{v{{u}^{'}}-u{{v}^{'}}}{{{v}^{2}}}\].
So, on differentiating the function by applying quotient rule for the entire function , we get ,
\[\dfrac{d}{dx}\left( \dfrac{\sqrt{x}{{\left( x+4 \right)}^{\dfrac{3}{2}}}}{{{\left( 4x-3 \right)}^{\dfrac{4}{3}}}} \right)=\dfrac{{{\left( 4x-3 \right)}^{\dfrac{4}{3}}}.\dfrac{d}{dx}\left( \sqrt{x}{{\left( x+4 \right)}^{\dfrac{3}{2}}} \right)-\left( \sqrt{x}{{\left( x+4 \right)}^{\dfrac{3}{2}}} \right).\dfrac{d}{dx}{{\left( 4x-3 \right)}^{\dfrac{4}{3}}}}{{{\left( {{\left( 4x-3 \right)}^{\dfrac{4}{3}}} \right)}^{2}}}\]
\[=\dfrac{{{\left( 4x-3 \right)}^{\dfrac{4}{3}}}.{{\left( x+4 \right)}^{\dfrac{1}{2}}}.\left( \dfrac{2x+2}{\sqrt{x}} \right)-\left( \sqrt{x}{{\left( x+4 \right)}^{\dfrac{3}{2}}} \right).\dfrac{4}{3}{{\left( 4x-3 \right)}^{\dfrac{1}{3}}}.4}{{{\left( 4x-3 \right)}^{\dfrac{8}{3}}}}\]
Now, we can take \[{{\left( 4x-3 \right)}^{\dfrac{1}{3}}}\] common in the numerator. So , we get ,
\[\dfrac{d}{dx}\left( \dfrac{\sqrt{x}{{\left( x+4 \right)}^{\dfrac{3}{2}}}}{{{\left( 4x-3 \right)}^{\dfrac{4}{3}}}} \right)=\dfrac{{{\left( 4x-3 \right)}^{\dfrac{1}{3}}}}{{{\left( 4x-3 \right)}^{\dfrac{8}{3}}}}\left[ \left( 4x-3 \right){{\left( x+4 \right)}^{\dfrac{1}{2}}}.\dfrac{2x+2}{\sqrt{x}}-{{\left( x+4 \right)}^{\dfrac{3}{2}}}.\sqrt{x}.\dfrac{16}{3} \right]\]
Again , we can take \[{{\left( x+4 \right)}^{\dfrac{1}{2}}}\] common in the numerator. So , we get ,
\[\dfrac{d}{dx}\left( \dfrac{\sqrt{x}{{\left( x+4 \right)}^{\dfrac{3}{2}}}}{{{\left( 4x-3 \right)}^{\dfrac{4}{3}}}} \right)=\dfrac{{{\left( x+4 \right)}^{\dfrac{1}{2}}}}{{{\left( 4x-3 \right)}^{\dfrac{7}{3}}}}\left[ \dfrac{3\left( 4x-3 \right)\left( 2x+2 \right)-\left( x+4 \right)\left( x \right).16}{3\sqrt{x}} \right]\]
\[=\dfrac{{{\left( x+4 \right)}^{\dfrac{1}{2}}}}{{{\left( 4x-3 \right)}^{\dfrac{7}{3}}}}\left[ \dfrac{24{{x}^{2}}+6x-18-16{{x}^{2}}-64x}{3\sqrt{x}} \right]\]
\[=\dfrac{{{\left( x+4 \right)}^{\dfrac{1}{2}}}}{{{\left( 4x-3 \right)}^{\dfrac{7}{3}}}}\left[ \dfrac{8{{x}^{2}}-58x-18}{3\sqrt{x}} \right]\]
Hence , the derivative of the function \[\dfrac{\sqrt{x}{{\left( x+4 \right)}^{\dfrac{3}{2}}}}{{{\left( 4x-3 \right)}^{\dfrac{4}{3}}}}\]with respect to \[x\]is given as \[\dfrac{{{\left( x+4 \right)}^{\dfrac{1}{2}}}}{{{\left( 4x-3 \right)}^{\dfrac{7}{3}}}}\left[ \dfrac{8{{x}^{2}}-58x-18}{3\sqrt{x}} \right]\] .
Note: While differentiating \[{{\left( 4x-3 \right)}^{\dfrac{4}{3}}}\], keep in mind that it is a composite function , i.e of the form\[h(x)=p(q(x))\] and its derivative will be \[\dfrac{4}{3}{{\left( 4x-3 \right)}^{\dfrac{1}{3}}}.4\]and not \[\dfrac{4}{3}{{\left( 4x-3 \right)}^{\dfrac{1}{3}}}\]. Students usually make such mistakes and end up getting the wrong answer. Such mistakes should be avoided .
Complete step-by-step solution -
The given function is\[\dfrac{\sqrt{x}{{\left( x+4 \right)}^{\dfrac{3}{2}}}}{{{\left( 4x-3 \right)}^{\dfrac{4}{3}}}}\]
Clearly , it is of the type \[\dfrac{f(x).g(x)}{h(x)}\]where \[f(x)=\sqrt{x};g(x)={{\left( x+4 \right)}^{\dfrac{3}{2}}}\]and \[h(x)={{\left( 4x-3 \right)}^{\dfrac{4}{3}}}\]
Now to find its derivative , first we will find the expression for the derivative of the numerator. It will be helpful while applying quotient rules to find the derivative of the entire function .
To find the derivative of the numerator , we will apply the product rule of differentiation . We know , the product rule of differentiation is given as \[\dfrac{d}{dx}\left( f(x).g(x) \right)={{f}^{'}}(x).g(x)+{{g}^{'}}(x).f(x)\]
So, we will differentiate the numerator with respect to \[x\] using the product rule of differentiation .
On differentiating the numerator with respect to \[x\], we get ,
\[\dfrac{d}{dx}\left( \sqrt{x}{{\left( x+4 \right)}^{\dfrac{3}{2}}} \right)=\dfrac{1}{2\sqrt{x}}{{\left( x+4 \right)}^{\dfrac{3}{2}}}+\dfrac{3}{2}{{\left( x+4 \right)}^{\dfrac{1}{2}}}.{{x}^{\dfrac{1}{2}}}\]
\[={{\left( x+4 \right)}^{\dfrac{1}{2}}}\left[ \dfrac{x+4}{2\sqrt{x}}+\dfrac{3}{2}\sqrt{x} \right]\]
\[={{\left( x+4 \right)}^{\dfrac{1}{2}}}\left[ \dfrac{x+4+3x}{2\sqrt{x}} \right]\]
\[={{\left( x+4 \right)}^{\dfrac{1}{2}}}\left[ \dfrac{4x+4}{2\sqrt{x}} \right]\]
\[={{\left( x+4 \right)}^{\dfrac{1}{2}}}\left[ \dfrac{2x+2}{\sqrt{x}} \right]\]
Now, we will differentiate the entire function with respect to \[x\]. To differentiate the entire function , we will apply the quotient rule of differentiation. For that , first we must know the quotient rule of differentiation. The quotient rule for differentiation is given as \[\dfrac{d}{dx}\left( \dfrac{u}{v} \right)=\dfrac{v{{u}^{'}}-u{{v}^{'}}}{{{v}^{2}}}\].
So, on differentiating the function by applying quotient rule for the entire function , we get ,
\[\dfrac{d}{dx}\left( \dfrac{\sqrt{x}{{\left( x+4 \right)}^{\dfrac{3}{2}}}}{{{\left( 4x-3 \right)}^{\dfrac{4}{3}}}} \right)=\dfrac{{{\left( 4x-3 \right)}^{\dfrac{4}{3}}}.\dfrac{d}{dx}\left( \sqrt{x}{{\left( x+4 \right)}^{\dfrac{3}{2}}} \right)-\left( \sqrt{x}{{\left( x+4 \right)}^{\dfrac{3}{2}}} \right).\dfrac{d}{dx}{{\left( 4x-3 \right)}^{\dfrac{4}{3}}}}{{{\left( {{\left( 4x-3 \right)}^{\dfrac{4}{3}}} \right)}^{2}}}\]
\[=\dfrac{{{\left( 4x-3 \right)}^{\dfrac{4}{3}}}.{{\left( x+4 \right)}^{\dfrac{1}{2}}}.\left( \dfrac{2x+2}{\sqrt{x}} \right)-\left( \sqrt{x}{{\left( x+4 \right)}^{\dfrac{3}{2}}} \right).\dfrac{4}{3}{{\left( 4x-3 \right)}^{\dfrac{1}{3}}}.4}{{{\left( 4x-3 \right)}^{\dfrac{8}{3}}}}\]
Now, we can take \[{{\left( 4x-3 \right)}^{\dfrac{1}{3}}}\] common in the numerator. So , we get ,
\[\dfrac{d}{dx}\left( \dfrac{\sqrt{x}{{\left( x+4 \right)}^{\dfrac{3}{2}}}}{{{\left( 4x-3 \right)}^{\dfrac{4}{3}}}} \right)=\dfrac{{{\left( 4x-3 \right)}^{\dfrac{1}{3}}}}{{{\left( 4x-3 \right)}^{\dfrac{8}{3}}}}\left[ \left( 4x-3 \right){{\left( x+4 \right)}^{\dfrac{1}{2}}}.\dfrac{2x+2}{\sqrt{x}}-{{\left( x+4 \right)}^{\dfrac{3}{2}}}.\sqrt{x}.\dfrac{16}{3} \right]\]
Again , we can take \[{{\left( x+4 \right)}^{\dfrac{1}{2}}}\] common in the numerator. So , we get ,
\[\dfrac{d}{dx}\left( \dfrac{\sqrt{x}{{\left( x+4 \right)}^{\dfrac{3}{2}}}}{{{\left( 4x-3 \right)}^{\dfrac{4}{3}}}} \right)=\dfrac{{{\left( x+4 \right)}^{\dfrac{1}{2}}}}{{{\left( 4x-3 \right)}^{\dfrac{7}{3}}}}\left[ \dfrac{3\left( 4x-3 \right)\left( 2x+2 \right)-\left( x+4 \right)\left( x \right).16}{3\sqrt{x}} \right]\]
\[=\dfrac{{{\left( x+4 \right)}^{\dfrac{1}{2}}}}{{{\left( 4x-3 \right)}^{\dfrac{7}{3}}}}\left[ \dfrac{24{{x}^{2}}+6x-18-16{{x}^{2}}-64x}{3\sqrt{x}} \right]\]
\[=\dfrac{{{\left( x+4 \right)}^{\dfrac{1}{2}}}}{{{\left( 4x-3 \right)}^{\dfrac{7}{3}}}}\left[ \dfrac{8{{x}^{2}}-58x-18}{3\sqrt{x}} \right]\]
Hence , the derivative of the function \[\dfrac{\sqrt{x}{{\left( x+4 \right)}^{\dfrac{3}{2}}}}{{{\left( 4x-3 \right)}^{\dfrac{4}{3}}}}\]with respect to \[x\]is given as \[\dfrac{{{\left( x+4 \right)}^{\dfrac{1}{2}}}}{{{\left( 4x-3 \right)}^{\dfrac{7}{3}}}}\left[ \dfrac{8{{x}^{2}}-58x-18}{3\sqrt{x}} \right]\] .
Note: While differentiating \[{{\left( 4x-3 \right)}^{\dfrac{4}{3}}}\], keep in mind that it is a composite function , i.e of the form\[h(x)=p(q(x))\] and its derivative will be \[\dfrac{4}{3}{{\left( 4x-3 \right)}^{\dfrac{1}{3}}}.4\]and not \[\dfrac{4}{3}{{\left( 4x-3 \right)}^{\dfrac{1}{3}}}\]. Students usually make such mistakes and end up getting the wrong answer. Such mistakes should be avoided .
Recently Updated Pages
Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 Physics: Engaging Questions & Answers for Success

Master Class 12 English: Engaging Questions & Answers for Success

Master Class 12 Social Science: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 12 Business Studies: Engaging Questions & Answers for Success

Trending doubts
Which are the Top 10 Largest Countries of the World?

What are the major means of transport Explain each class 12 social science CBSE

Draw a labelled sketch of the human eye class 12 physics CBSE

Why cannot DNA pass through cell membranes class 12 biology CBSE

Differentiate between insitu conservation and exsitu class 12 biology CBSE

Draw a neat and well labeled diagram of TS of ovary class 12 biology CBSE

