
Find the derivative of ${\csc ^2}x$, by using the first principle of derivatives.
Answer
510.6k+ views
Hint: To solve this problem,consider Let $f(x) = {\csc ^2}x$. Find \[f(x + h)\] and hence find \[f'(x)\]using the formula \[f'(x) = \mathop {\lim }\limits_{h \to 0} \dfrac{{f(x + h) - f(x)}}{h}\].
Complete step by step solution:
We are given a trigonometric function ${\csc ^2}x$.
We need to find its derivative by using the first principle of derivatives.
Now, let $f(x) = {\csc ^2}x$
The formula for finding the derivatives using the first principle is as follows:
\[g'(x) = \mathop {\lim }\limits_{h \to 0} \dfrac{{g(x + h) - g(x)}}{h}\]
where\[g'(x)\]denotes the derivative of the function\[g(x)\]and h is a very small value such that g is defined for both\[x\]and\[x{\text{ }} + {\text{ }}h\]
Therefore,
\[f'(x) = \mathop {\lim }\limits_{h \to 0} \dfrac{{f(x + h) - f(x)}}{h}\]
Now, \[f(x) = {\csc ^2}x \Rightarrow f(x + h) = {\csc ^2}(x + h)\]
Then
\[f'(x) = \mathop {\lim }\limits_{h \to 0} \dfrac{{{{\csc }^2}(x + h) - {{\csc }^2}x}}{h}\]
Using the identity $\csc \theta = \dfrac{1}{{\sin \theta }}$, we get
\[
f'(x) = \mathop {\lim }\limits_{h \to 0} \dfrac{{\dfrac{1}{{{{\sin }^2}(x + h)}} - \dfrac{1}{{{{\sin }^2}x}}}}{h} \\
= \mathop {\lim }\limits_{h \to 0} \dfrac{{\dfrac{{{{\sin }^2}x - {{\sin }^2}(x + h)}}{{{{\sin }^2}(x + h) \times {{\sin }^2}x}}}}{h} \\
= \mathop {\lim }\limits_{h \to 0} \dfrac{1}{h} \times ({\sin ^2}x - {\sin ^2}(x + h)) \times \dfrac{1}{{{{\sin }^2}(x + h) \times {{\sin }^2}x}} \\
= \mathop {\lim }\limits_{h \to 0} \dfrac{1}{h} \times ({\sin ^2}x - {\sin ^2}(x + h)) \times \mathop {\lim }\limits_{h \to 0} \dfrac{1}{{{{\sin }^2}(x + h) \times {{\sin }^2}x}}...........(1) \\
\]
Now,
\[
\mathop {\lim }\limits_{h \to 0} \dfrac{1}{{{{\sin }^2}(x + h) \times {{\sin }^2}x}} \\
= \dfrac{1}{{{{\sin }^2}(x + 0) \times {{\sin }^2}x}} \\
= \dfrac{1}{{{{\sin }^2}x \times {{\sin }^2}x}} \\
= \dfrac{1}{{{{\sin }^4}x}} \\
= {\csc ^4}x.........(2) \\
\]
And using the identity ${a^2} - {b^2} = (a - b)(a + b)$, we have
\[
\mathop {\lim }\limits_{h \to 0} \dfrac{1}{h} \times ({\sin ^2}x - {\sin ^2}(x + h)) \\
= \mathop {\lim }\limits_{h \to 0} \dfrac{1}{h} \times (\sin x - \sin (x + h)) \times (\sin x - \sin (x + h)).......(3) \\
\]
We know that
\[\sin A \pm \sin B = 2\sin \left( {\dfrac{{A \pm B}}{2}} \right)cos\left( {\dfrac{{A \mp B}}{2}} \right)\]
Here, in (3), we have$A = x,B = x + h$
We use this identity to simplify (3)
\[
\mathop {\lim }\limits_{h \to 0} \dfrac{1}{h} \times ({\sin ^2}x - {\sin ^2}(x + h)) \\
= \mathop {\lim }\limits_{h \to 0} \dfrac{1}{h} \times (2\sin \dfrac{{(x - (x + h))}}{2})\cos (\dfrac{{x + (x + h)}}{2}) \times 2\sin \dfrac{{(x + (x + h))}}{2})\cos (\dfrac{{x - (x + h)}}{2}) \\
= \mathop {\lim }\limits_{h \to 0} \dfrac{1}{h} \times 2\sin (\dfrac{{ - h}}{2})\cos (x + \dfrac{h}{2}) \times 2\sin (x + \dfrac{h}{2})\cos (\dfrac{{ - h}}{2}).....(4) \\
\]
We will use the following facts in (4).
\[
\mathop {\lim }\limits_{\theta \to 0} \dfrac{{\sin \theta }}{\theta } = 1 \\
\cos 0 = 1 \\
h \to 0 \Rightarrow \dfrac{{ - h}}{2} \to 0 \\
\]
\[
\mathop {\lim }\limits_{h \to 0} \dfrac{1}{h} \times ({\sin ^2}x - {\sin ^2}(x + h)) \\
= \mathop {\lim }\limits_{h \to 0} \dfrac{1}{h} \times 2\sin (\dfrac{{ - h}}{2}) \times \mathop {\lim }\limits_{h \to 0} \cos (x + \dfrac{h}{2}) \times 2\mathop {\lim }\limits_{h \to 0} \sin (x + \dfrac{h}{2}) \times \mathop {\lim }\limits_{h \to 0} \cos (\dfrac{{ - h}}{2}) \\
= \mathop { - \lim }\limits_{h \to 0} \dfrac{{\sin (\dfrac{{ - h}}{2})}}{{\dfrac{{ - h}}{2}}} \times \mathop {\lim }\limits_{h \to 0} \cos (x + \dfrac{h}{2}) \times 2\mathop {\lim }\limits_{h \to 0} \sin (x + \dfrac{h}{2}) \times \mathop {\lim }\limits_{h \to 0} \cos (\dfrac{{ - h}}{2}) \\
= - 1 \times \cos (x + 0) \times 2 \times \sin (x + 0) \times \cos 0 \\
= - 2\sin x\cos x.........(5) \\
\]
Combining (1), (2), and (5), we get
\[
f'(x) = \mathop {\lim }\limits_{h \to 0} \dfrac{{{{\csc }^2}(x + h) - {{\csc }^2}x}}{h} \\
= - 2\sin x\cos x{\csc ^4}x \\
= - 2\sin x\cos x\dfrac{1}{{{{\sin }^4}x}} \\
= - 2{\csc ^2}x\cot x \\
\]
Hence the derivative of ${\csc ^2}x$is\[ - 2{\csc ^2}x\cot x\].
Note: One must remember that$\mathop {\lim }\limits_{h \to 0} \dfrac{{\sin (\dfrac{1}{h})}}{{\dfrac{1}{h}}} \ne 0$. This is because $h \to 0$,$\dfrac{1}{h} \to \infty $. Therefore, the formula\[\mathop {\lim }\limits_{\theta \to 0} \dfrac{{\sin \theta }}{\theta } = 1\]does not work here.
Complete step by step solution:
We are given a trigonometric function ${\csc ^2}x$.
We need to find its derivative by using the first principle of derivatives.
Now, let $f(x) = {\csc ^2}x$
The formula for finding the derivatives using the first principle is as follows:
\[g'(x) = \mathop {\lim }\limits_{h \to 0} \dfrac{{g(x + h) - g(x)}}{h}\]
where\[g'(x)\]denotes the derivative of the function\[g(x)\]and h is a very small value such that g is defined for both\[x\]and\[x{\text{ }} + {\text{ }}h\]
Therefore,
\[f'(x) = \mathop {\lim }\limits_{h \to 0} \dfrac{{f(x + h) - f(x)}}{h}\]
Now, \[f(x) = {\csc ^2}x \Rightarrow f(x + h) = {\csc ^2}(x + h)\]
Then
\[f'(x) = \mathop {\lim }\limits_{h \to 0} \dfrac{{{{\csc }^2}(x + h) - {{\csc }^2}x}}{h}\]
Using the identity $\csc \theta = \dfrac{1}{{\sin \theta }}$, we get
\[
f'(x) = \mathop {\lim }\limits_{h \to 0} \dfrac{{\dfrac{1}{{{{\sin }^2}(x + h)}} - \dfrac{1}{{{{\sin }^2}x}}}}{h} \\
= \mathop {\lim }\limits_{h \to 0} \dfrac{{\dfrac{{{{\sin }^2}x - {{\sin }^2}(x + h)}}{{{{\sin }^2}(x + h) \times {{\sin }^2}x}}}}{h} \\
= \mathop {\lim }\limits_{h \to 0} \dfrac{1}{h} \times ({\sin ^2}x - {\sin ^2}(x + h)) \times \dfrac{1}{{{{\sin }^2}(x + h) \times {{\sin }^2}x}} \\
= \mathop {\lim }\limits_{h \to 0} \dfrac{1}{h} \times ({\sin ^2}x - {\sin ^2}(x + h)) \times \mathop {\lim }\limits_{h \to 0} \dfrac{1}{{{{\sin }^2}(x + h) \times {{\sin }^2}x}}...........(1) \\
\]
Now,
\[
\mathop {\lim }\limits_{h \to 0} \dfrac{1}{{{{\sin }^2}(x + h) \times {{\sin }^2}x}} \\
= \dfrac{1}{{{{\sin }^2}(x + 0) \times {{\sin }^2}x}} \\
= \dfrac{1}{{{{\sin }^2}x \times {{\sin }^2}x}} \\
= \dfrac{1}{{{{\sin }^4}x}} \\
= {\csc ^4}x.........(2) \\
\]
And using the identity ${a^2} - {b^2} = (a - b)(a + b)$, we have
\[
\mathop {\lim }\limits_{h \to 0} \dfrac{1}{h} \times ({\sin ^2}x - {\sin ^2}(x + h)) \\
= \mathop {\lim }\limits_{h \to 0} \dfrac{1}{h} \times (\sin x - \sin (x + h)) \times (\sin x - \sin (x + h)).......(3) \\
\]
We know that
\[\sin A \pm \sin B = 2\sin \left( {\dfrac{{A \pm B}}{2}} \right)cos\left( {\dfrac{{A \mp B}}{2}} \right)\]
Here, in (3), we have$A = x,B = x + h$
We use this identity to simplify (3)
\[
\mathop {\lim }\limits_{h \to 0} \dfrac{1}{h} \times ({\sin ^2}x - {\sin ^2}(x + h)) \\
= \mathop {\lim }\limits_{h \to 0} \dfrac{1}{h} \times (2\sin \dfrac{{(x - (x + h))}}{2})\cos (\dfrac{{x + (x + h)}}{2}) \times 2\sin \dfrac{{(x + (x + h))}}{2})\cos (\dfrac{{x - (x + h)}}{2}) \\
= \mathop {\lim }\limits_{h \to 0} \dfrac{1}{h} \times 2\sin (\dfrac{{ - h}}{2})\cos (x + \dfrac{h}{2}) \times 2\sin (x + \dfrac{h}{2})\cos (\dfrac{{ - h}}{2}).....(4) \\
\]
We will use the following facts in (4).
\[
\mathop {\lim }\limits_{\theta \to 0} \dfrac{{\sin \theta }}{\theta } = 1 \\
\cos 0 = 1 \\
h \to 0 \Rightarrow \dfrac{{ - h}}{2} \to 0 \\
\]
\[
\mathop {\lim }\limits_{h \to 0} \dfrac{1}{h} \times ({\sin ^2}x - {\sin ^2}(x + h)) \\
= \mathop {\lim }\limits_{h \to 0} \dfrac{1}{h} \times 2\sin (\dfrac{{ - h}}{2}) \times \mathop {\lim }\limits_{h \to 0} \cos (x + \dfrac{h}{2}) \times 2\mathop {\lim }\limits_{h \to 0} \sin (x + \dfrac{h}{2}) \times \mathop {\lim }\limits_{h \to 0} \cos (\dfrac{{ - h}}{2}) \\
= \mathop { - \lim }\limits_{h \to 0} \dfrac{{\sin (\dfrac{{ - h}}{2})}}{{\dfrac{{ - h}}{2}}} \times \mathop {\lim }\limits_{h \to 0} \cos (x + \dfrac{h}{2}) \times 2\mathop {\lim }\limits_{h \to 0} \sin (x + \dfrac{h}{2}) \times \mathop {\lim }\limits_{h \to 0} \cos (\dfrac{{ - h}}{2}) \\
= - 1 \times \cos (x + 0) \times 2 \times \sin (x + 0) \times \cos 0 \\
= - 2\sin x\cos x.........(5) \\
\]
Combining (1), (2), and (5), we get
\[
f'(x) = \mathop {\lim }\limits_{h \to 0} \dfrac{{{{\csc }^2}(x + h) - {{\csc }^2}x}}{h} \\
= - 2\sin x\cos x{\csc ^4}x \\
= - 2\sin x\cos x\dfrac{1}{{{{\sin }^4}x}} \\
= - 2{\csc ^2}x\cot x \\
\]
Hence the derivative of ${\csc ^2}x$is\[ - 2{\csc ^2}x\cot x\].
Note: One must remember that$\mathop {\lim }\limits_{h \to 0} \dfrac{{\sin (\dfrac{1}{h})}}{{\dfrac{1}{h}}} \ne 0$. This is because $h \to 0$,$\dfrac{1}{h} \to \infty $. Therefore, the formula\[\mathop {\lim }\limits_{\theta \to 0} \dfrac{{\sin \theta }}{\theta } = 1\]does not work here.
Recently Updated Pages
Master Class 11 Physics: Engaging Questions & Answers for Success

Master Class 11 Chemistry: Engaging Questions & Answers for Success

Master Class 11 Biology: Engaging Questions & Answers for Success

Class 11 Question and Answer - Your Ultimate Solutions Guide

Master Class 11 Business Studies: Engaging Questions & Answers for Success

Master Class 11 Computer Science: Engaging Questions & Answers for Success

Trending doubts
Explain why it is said like that Mock drill is use class 11 social science CBSE

Which of the following blood vessels in the circulatory class 11 biology CBSE

1 ton equals to A 100 kg B 1000 kg C 10 kg D 10000 class 11 physics CBSE

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

Which of the following is nitrogenfixing algae a Nostoc class 11 biology CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells
