
Find the derivative of ${\csc ^2}x$, by using the first principle of derivatives.
Answer
574.8k+ views
Hint: To solve this problem,consider Let $f(x) = {\csc ^2}x$. Find \[f(x + h)\] and hence find \[f'(x)\]using the formula \[f'(x) = \mathop {\lim }\limits_{h \to 0} \dfrac{{f(x + h) - f(x)}}{h}\].
Complete step by step solution:
We are given a trigonometric function ${\csc ^2}x$.
We need to find its derivative by using the first principle of derivatives.
Now, let $f(x) = {\csc ^2}x$
The formula for finding the derivatives using the first principle is as follows:
\[g'(x) = \mathop {\lim }\limits_{h \to 0} \dfrac{{g(x + h) - g(x)}}{h}\]
where\[g'(x)\]denotes the derivative of the function\[g(x)\]and h is a very small value such that g is defined for both\[x\]and\[x{\text{ }} + {\text{ }}h\]
Therefore,
\[f'(x) = \mathop {\lim }\limits_{h \to 0} \dfrac{{f(x + h) - f(x)}}{h}\]
Now, \[f(x) = {\csc ^2}x \Rightarrow f(x + h) = {\csc ^2}(x + h)\]
Then
\[f'(x) = \mathop {\lim }\limits_{h \to 0} \dfrac{{{{\csc }^2}(x + h) - {{\csc }^2}x}}{h}\]
Using the identity $\csc \theta = \dfrac{1}{{\sin \theta }}$, we get
\[
f'(x) = \mathop {\lim }\limits_{h \to 0} \dfrac{{\dfrac{1}{{{{\sin }^2}(x + h)}} - \dfrac{1}{{{{\sin }^2}x}}}}{h} \\
= \mathop {\lim }\limits_{h \to 0} \dfrac{{\dfrac{{{{\sin }^2}x - {{\sin }^2}(x + h)}}{{{{\sin }^2}(x + h) \times {{\sin }^2}x}}}}{h} \\
= \mathop {\lim }\limits_{h \to 0} \dfrac{1}{h} \times ({\sin ^2}x - {\sin ^2}(x + h)) \times \dfrac{1}{{{{\sin }^2}(x + h) \times {{\sin }^2}x}} \\
= \mathop {\lim }\limits_{h \to 0} \dfrac{1}{h} \times ({\sin ^2}x - {\sin ^2}(x + h)) \times \mathop {\lim }\limits_{h \to 0} \dfrac{1}{{{{\sin }^2}(x + h) \times {{\sin }^2}x}}...........(1) \\
\]
Now,
\[
\mathop {\lim }\limits_{h \to 0} \dfrac{1}{{{{\sin }^2}(x + h) \times {{\sin }^2}x}} \\
= \dfrac{1}{{{{\sin }^2}(x + 0) \times {{\sin }^2}x}} \\
= \dfrac{1}{{{{\sin }^2}x \times {{\sin }^2}x}} \\
= \dfrac{1}{{{{\sin }^4}x}} \\
= {\csc ^4}x.........(2) \\
\]
And using the identity ${a^2} - {b^2} = (a - b)(a + b)$, we have
\[
\mathop {\lim }\limits_{h \to 0} \dfrac{1}{h} \times ({\sin ^2}x - {\sin ^2}(x + h)) \\
= \mathop {\lim }\limits_{h \to 0} \dfrac{1}{h} \times (\sin x - \sin (x + h)) \times (\sin x - \sin (x + h)).......(3) \\
\]
We know that
\[\sin A \pm \sin B = 2\sin \left( {\dfrac{{A \pm B}}{2}} \right)cos\left( {\dfrac{{A \mp B}}{2}} \right)\]
Here, in (3), we have$A = x,B = x + h$
We use this identity to simplify (3)
\[
\mathop {\lim }\limits_{h \to 0} \dfrac{1}{h} \times ({\sin ^2}x - {\sin ^2}(x + h)) \\
= \mathop {\lim }\limits_{h \to 0} \dfrac{1}{h} \times (2\sin \dfrac{{(x - (x + h))}}{2})\cos (\dfrac{{x + (x + h)}}{2}) \times 2\sin \dfrac{{(x + (x + h))}}{2})\cos (\dfrac{{x - (x + h)}}{2}) \\
= \mathop {\lim }\limits_{h \to 0} \dfrac{1}{h} \times 2\sin (\dfrac{{ - h}}{2})\cos (x + \dfrac{h}{2}) \times 2\sin (x + \dfrac{h}{2})\cos (\dfrac{{ - h}}{2}).....(4) \\
\]
We will use the following facts in (4).
\[
\mathop {\lim }\limits_{\theta \to 0} \dfrac{{\sin \theta }}{\theta } = 1 \\
\cos 0 = 1 \\
h \to 0 \Rightarrow \dfrac{{ - h}}{2} \to 0 \\
\]
\[
\mathop {\lim }\limits_{h \to 0} \dfrac{1}{h} \times ({\sin ^2}x - {\sin ^2}(x + h)) \\
= \mathop {\lim }\limits_{h \to 0} \dfrac{1}{h} \times 2\sin (\dfrac{{ - h}}{2}) \times \mathop {\lim }\limits_{h \to 0} \cos (x + \dfrac{h}{2}) \times 2\mathop {\lim }\limits_{h \to 0} \sin (x + \dfrac{h}{2}) \times \mathop {\lim }\limits_{h \to 0} \cos (\dfrac{{ - h}}{2}) \\
= \mathop { - \lim }\limits_{h \to 0} \dfrac{{\sin (\dfrac{{ - h}}{2})}}{{\dfrac{{ - h}}{2}}} \times \mathop {\lim }\limits_{h \to 0} \cos (x + \dfrac{h}{2}) \times 2\mathop {\lim }\limits_{h \to 0} \sin (x + \dfrac{h}{2}) \times \mathop {\lim }\limits_{h \to 0} \cos (\dfrac{{ - h}}{2}) \\
= - 1 \times \cos (x + 0) \times 2 \times \sin (x + 0) \times \cos 0 \\
= - 2\sin x\cos x.........(5) \\
\]
Combining (1), (2), and (5), we get
\[
f'(x) = \mathop {\lim }\limits_{h \to 0} \dfrac{{{{\csc }^2}(x + h) - {{\csc }^2}x}}{h} \\
= - 2\sin x\cos x{\csc ^4}x \\
= - 2\sin x\cos x\dfrac{1}{{{{\sin }^4}x}} \\
= - 2{\csc ^2}x\cot x \\
\]
Hence the derivative of ${\csc ^2}x$is\[ - 2{\csc ^2}x\cot x\].
Note: One must remember that$\mathop {\lim }\limits_{h \to 0} \dfrac{{\sin (\dfrac{1}{h})}}{{\dfrac{1}{h}}} \ne 0$. This is because $h \to 0$,$\dfrac{1}{h} \to \infty $. Therefore, the formula\[\mathop {\lim }\limits_{\theta \to 0} \dfrac{{\sin \theta }}{\theta } = 1\]does not work here.
Complete step by step solution:
We are given a trigonometric function ${\csc ^2}x$.
We need to find its derivative by using the first principle of derivatives.
Now, let $f(x) = {\csc ^2}x$
The formula for finding the derivatives using the first principle is as follows:
\[g'(x) = \mathop {\lim }\limits_{h \to 0} \dfrac{{g(x + h) - g(x)}}{h}\]
where\[g'(x)\]denotes the derivative of the function\[g(x)\]and h is a very small value such that g is defined for both\[x\]and\[x{\text{ }} + {\text{ }}h\]
Therefore,
\[f'(x) = \mathop {\lim }\limits_{h \to 0} \dfrac{{f(x + h) - f(x)}}{h}\]
Now, \[f(x) = {\csc ^2}x \Rightarrow f(x + h) = {\csc ^2}(x + h)\]
Then
\[f'(x) = \mathop {\lim }\limits_{h \to 0} \dfrac{{{{\csc }^2}(x + h) - {{\csc }^2}x}}{h}\]
Using the identity $\csc \theta = \dfrac{1}{{\sin \theta }}$, we get
\[
f'(x) = \mathop {\lim }\limits_{h \to 0} \dfrac{{\dfrac{1}{{{{\sin }^2}(x + h)}} - \dfrac{1}{{{{\sin }^2}x}}}}{h} \\
= \mathop {\lim }\limits_{h \to 0} \dfrac{{\dfrac{{{{\sin }^2}x - {{\sin }^2}(x + h)}}{{{{\sin }^2}(x + h) \times {{\sin }^2}x}}}}{h} \\
= \mathop {\lim }\limits_{h \to 0} \dfrac{1}{h} \times ({\sin ^2}x - {\sin ^2}(x + h)) \times \dfrac{1}{{{{\sin }^2}(x + h) \times {{\sin }^2}x}} \\
= \mathop {\lim }\limits_{h \to 0} \dfrac{1}{h} \times ({\sin ^2}x - {\sin ^2}(x + h)) \times \mathop {\lim }\limits_{h \to 0} \dfrac{1}{{{{\sin }^2}(x + h) \times {{\sin }^2}x}}...........(1) \\
\]
Now,
\[
\mathop {\lim }\limits_{h \to 0} \dfrac{1}{{{{\sin }^2}(x + h) \times {{\sin }^2}x}} \\
= \dfrac{1}{{{{\sin }^2}(x + 0) \times {{\sin }^2}x}} \\
= \dfrac{1}{{{{\sin }^2}x \times {{\sin }^2}x}} \\
= \dfrac{1}{{{{\sin }^4}x}} \\
= {\csc ^4}x.........(2) \\
\]
And using the identity ${a^2} - {b^2} = (a - b)(a + b)$, we have
\[
\mathop {\lim }\limits_{h \to 0} \dfrac{1}{h} \times ({\sin ^2}x - {\sin ^2}(x + h)) \\
= \mathop {\lim }\limits_{h \to 0} \dfrac{1}{h} \times (\sin x - \sin (x + h)) \times (\sin x - \sin (x + h)).......(3) \\
\]
We know that
\[\sin A \pm \sin B = 2\sin \left( {\dfrac{{A \pm B}}{2}} \right)cos\left( {\dfrac{{A \mp B}}{2}} \right)\]
Here, in (3), we have$A = x,B = x + h$
We use this identity to simplify (3)
\[
\mathop {\lim }\limits_{h \to 0} \dfrac{1}{h} \times ({\sin ^2}x - {\sin ^2}(x + h)) \\
= \mathop {\lim }\limits_{h \to 0} \dfrac{1}{h} \times (2\sin \dfrac{{(x - (x + h))}}{2})\cos (\dfrac{{x + (x + h)}}{2}) \times 2\sin \dfrac{{(x + (x + h))}}{2})\cos (\dfrac{{x - (x + h)}}{2}) \\
= \mathop {\lim }\limits_{h \to 0} \dfrac{1}{h} \times 2\sin (\dfrac{{ - h}}{2})\cos (x + \dfrac{h}{2}) \times 2\sin (x + \dfrac{h}{2})\cos (\dfrac{{ - h}}{2}).....(4) \\
\]
We will use the following facts in (4).
\[
\mathop {\lim }\limits_{\theta \to 0} \dfrac{{\sin \theta }}{\theta } = 1 \\
\cos 0 = 1 \\
h \to 0 \Rightarrow \dfrac{{ - h}}{2} \to 0 \\
\]
\[
\mathop {\lim }\limits_{h \to 0} \dfrac{1}{h} \times ({\sin ^2}x - {\sin ^2}(x + h)) \\
= \mathop {\lim }\limits_{h \to 0} \dfrac{1}{h} \times 2\sin (\dfrac{{ - h}}{2}) \times \mathop {\lim }\limits_{h \to 0} \cos (x + \dfrac{h}{2}) \times 2\mathop {\lim }\limits_{h \to 0} \sin (x + \dfrac{h}{2}) \times \mathop {\lim }\limits_{h \to 0} \cos (\dfrac{{ - h}}{2}) \\
= \mathop { - \lim }\limits_{h \to 0} \dfrac{{\sin (\dfrac{{ - h}}{2})}}{{\dfrac{{ - h}}{2}}} \times \mathop {\lim }\limits_{h \to 0} \cos (x + \dfrac{h}{2}) \times 2\mathop {\lim }\limits_{h \to 0} \sin (x + \dfrac{h}{2}) \times \mathop {\lim }\limits_{h \to 0} \cos (\dfrac{{ - h}}{2}) \\
= - 1 \times \cos (x + 0) \times 2 \times \sin (x + 0) \times \cos 0 \\
= - 2\sin x\cos x.........(5) \\
\]
Combining (1), (2), and (5), we get
\[
f'(x) = \mathop {\lim }\limits_{h \to 0} \dfrac{{{{\csc }^2}(x + h) - {{\csc }^2}x}}{h} \\
= - 2\sin x\cos x{\csc ^4}x \\
= - 2\sin x\cos x\dfrac{1}{{{{\sin }^4}x}} \\
= - 2{\csc ^2}x\cot x \\
\]
Hence the derivative of ${\csc ^2}x$is\[ - 2{\csc ^2}x\cot x\].
Note: One must remember that$\mathop {\lim }\limits_{h \to 0} \dfrac{{\sin (\dfrac{1}{h})}}{{\dfrac{1}{h}}} \ne 0$. This is because $h \to 0$,$\dfrac{1}{h} \to \infty $. Therefore, the formula\[\mathop {\lim }\limits_{\theta \to 0} \dfrac{{\sin \theta }}{\theta } = 1\]does not work here.
Recently Updated Pages
Master Class 12 Business Studies: Engaging Questions & Answers for Success

Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 English: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 12 Social Science: Engaging Questions & Answers for Success

Master Class 12 Chemistry: Engaging Questions & Answers for Success

Trending doubts
What is meant by exothermic and endothermic reactions class 11 chemistry CBSE

Which animal has three hearts class 11 biology CBSE

10 examples of friction in our daily life

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

1 Quintal is equal to a 110 kg b 10 kg c 100kg d 1000 class 11 physics CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells

