
How do you find the derivative of $cos\left( {\sqrt x } \right)$?
Answer
530.7k+ views
Hint:
In this question, we want to find the derivative of the cosine square root of x. First, consider it as a function $y = \cos \left( {\sqrt x } \right)$. Based on the definition of differentiation, we will solve this question. The formula is $\dfrac{{dy}}{{dx}} = \mathop {\lim }\limits_{\Delta x \to 0} \dfrac{{f\left( {x + \Delta x} \right) - f\left( x \right)}}{{\Delta x}}$ . Then apply some trigonometry formulas and simplify the question.
Complete step by step solution:
The function given in this question is,
$ \Rightarrow y = \cos \left( {\sqrt x } \right)$
To solve the above function, we will apply the formula of differentiation.
$ \Rightarrow \dfrac{{dy}}{{dx}} = \mathop {\lim }\limits_{\Delta x \to 0} \dfrac{{f\left( {x + \Delta x} \right) - f\left( x \right)}}{{\Delta x}}$ ...(1)
Substitute the value of the function in equation (1).
$ \Rightarrow \dfrac{{dy}}{{dx}} = \mathop {\lim }\limits_{\Delta x \to 0} \dfrac{{\cos \left( {\sqrt {x + \Delta x} } \right) - \cos \left( {\sqrt x } \right)}}{{\Delta x}}$
Now, we already know the trigonometry formula $\cos A - \cos B = - 2\sin \left( {\dfrac{{A + B}}{2}} \right)\sin \left( {\dfrac{{A - B}}{2}} \right)$.
Here, the value of ‘A’ is $\sqrt {x + \Delta x} $ and the value of ‘B’ is $\sqrt x $.
Apply this formula and substitute the values of A and B.
$ \Rightarrow \dfrac{{dy}}{{dx}} = \mathop {\lim }\limits_{\Delta x \to 0} \dfrac{{ - 2\sin \left( {\dfrac{{\sqrt {x + \Delta x} + \sqrt x }}{2}} \right)\sin \left( {\dfrac{{\sqrt {x + \Delta x} - \sqrt x }}{2}} \right)}}{{\Delta x}}$...(2)
Now, we can write,
$ \Rightarrow \left( {\sqrt {x + \Delta x} + \sqrt x } \right)\left( {\sqrt {x + \Delta x} - \sqrt x } \right) = {\left( {\sqrt {x + \Delta x} } \right)^2} - {\left( {\sqrt x } \right)^2}$
We can cancel out the square root and square on the right-hand side.
Therefore,
$ \Rightarrow \left( {\sqrt {x + \Delta x} + \sqrt x } \right)\left( {\sqrt {x + \Delta x} - \sqrt x } \right) = x + \Delta x - x$
Apply the subtraction on the right-hand side. The subtraction of x and x is 0.
Therefore,
$ \Rightarrow \left( {\sqrt {x + \Delta x} + \sqrt x } \right)\left( {\sqrt {x + \Delta x} - \sqrt x } \right) = \Delta x$
Let us put this value in equation (2).
$ \Rightarrow \dfrac{{dy}}{{dx}} = \mathop {\lim }\limits_{\Delta x \to 0} \dfrac{{ - 2\sin \left( {\dfrac{{\sqrt {x + \Delta x} + \sqrt x }}{2}} \right)\sin \left( {\dfrac{{\sqrt {x + \Delta x} - \sqrt x }}{2}} \right)}}{{\left( {\sqrt {x + \Delta x} + \sqrt x } \right)\left( {\sqrt {x + \Delta x} - \sqrt x } \right)}}$
Let us split the denominator,
$ \Rightarrow \dfrac{{dy}}{{dx}} = \mathop {\lim }\limits_{\Delta x \to 0} \dfrac{{ - 2\sin \left( {\dfrac{{\sqrt {x + \Delta x} + \sqrt x }}{2}} \right)}}{{\left( {\sqrt {x + \Delta x} + \sqrt x } \right)}} \times \dfrac{{\sin \left( {\dfrac{{\sqrt {x + \Delta x} - \sqrt x }}{2}} \right)}}{{\left( {\sqrt {x + \Delta x} - \sqrt x } \right)}}$
Divide the numerator and the denominator by 2.
So,
$ \Rightarrow \dfrac{{dy}}{{dx}} = - \mathop {\lim }\limits_{\Delta x \to 0} \dfrac{{\sin \left( {\dfrac{{\sqrt {x + \Delta x} + \sqrt x }}{2}} \right)}}{{\left( {\sqrt {x + \Delta x} + \sqrt x } \right)}} \times \dfrac{{\sin \left( {\dfrac{{\sqrt {x + \Delta x} - \sqrt x }}{2}} \right)}}{{\left( {\dfrac{{\sqrt {x + \Delta x} - \sqrt x }}{2}} \right)}}$
Apply the limit to both functions.
$ \Rightarrow \dfrac{{dy}}{{dx}} = - \mathop {\lim }\limits_{\Delta x \to 0} \dfrac{{\sin \left( {\dfrac{{\sqrt {x + \Delta x} + \sqrt x }}{2}} \right)}}{{\left( {\sqrt {x + \Delta x} + \sqrt x } \right)}} \times \mathop {\lim }\limits_{\Delta x \to 0} \dfrac{{\sin \left( {\dfrac{{\sqrt {x + \Delta x} - \sqrt x }}{2}} \right)}}{{\left( {\dfrac{{\sqrt {x + \Delta x} - \sqrt x }}{2}} \right)}}$
Now, let us consider $\left( {\dfrac{{\sqrt {x + \Delta x} - \sqrt x }}{2}} \right) = u$.
Here, as $\Delta x \to 0$ then $u \to 0$.
So,
$ \Rightarrow \dfrac{{dy}}{{dx}} = - \mathop {\lim }\limits_{\Delta x \to 0} \dfrac{{\sin \left( {\dfrac{{\sqrt {x + \Delta x} + \sqrt x }}{2}} \right)}}{{\left( {\sqrt {x + \Delta x} + \sqrt x } \right)}} \times \mathop {\lim }\limits_{u \to 0} \dfrac{{\sin \left( u \right)}}{{\left( u \right)}}$
We know that $\mathop {\lim }\limits_{u \to 0} \dfrac{{\sin \left( u \right)}}{{\left( u \right)}} = 1$
So,
$ \Rightarrow \dfrac{{dy}}{{dx}} = - \mathop {\lim }\limits_{\Delta x \to 0} \dfrac{{\sin \left( {\dfrac{{\sqrt {x + \Delta x} + \sqrt x }}{2}} \right)}}{{\left( {\sqrt {x + \Delta x} + \sqrt x } \right)}} \times 1$
Now, apply the limit to the function.
So,
$ \Rightarrow \dfrac{{dy}}{{dx}} = - \dfrac{{\sin \left( {\dfrac{{\sqrt {x + 0} + \sqrt x }}{2}} \right)}}{{\left( {\sqrt {x + 0} + \sqrt x } \right)}}$
That is equal to,
$ \Rightarrow \dfrac{{dy}}{{dx}} = - \dfrac{{\sin \left( {\dfrac{{2\sqrt x }}{2}} \right)}}{{\left( {2\sqrt x } \right)}}$
Therefore,
$ \Rightarrow \dfrac{{dy}}{{dx}} = - \dfrac{{\sin \left( {\sqrt x } \right)}}{{2\sqrt x }}$
Hence the answer is $ - \dfrac{{\sin \left( {\sqrt x } \right)}}{{2\sqrt x }}$.
Note:
The second method to solve the question is as below.
We want to find the derivative of cosine square root x.
$ \Rightarrow \dfrac{d}{{dx}}\left( {\cos \left( {\sqrt x } \right)} \right)$
Apply the formula $\dfrac{d}{{dx}}\cos y = - \sin y\dfrac{{dy}}{{dx}}$
Put $\sqrt x $ instead of y in the above formula.
So,
$ \Rightarrow \dfrac{d}{{dx}}\left( {\cos \left( {\sqrt x } \right)} \right) = - \sin \left( {\sqrt x } \right)\dfrac{d}{{dx}}\left( {\sqrt x } \right)$
We can write $\sqrt x $ as ${x^{\dfrac{1}{2}}}$.
So,
$ \Rightarrow \dfrac{d}{{dx}}\left( {\cos \left( {\sqrt x } \right)} \right) = - \sin \left( {\sqrt x } \right)\dfrac{d}{{dx}}\left( {{x^{\dfrac{1}{2}}}} \right)$
Now, apply the formula $\dfrac{d}{{dx}}{x^n} = n{x^{n - 1}}$ .
$ \Rightarrow \dfrac{d}{{dx}}\left( {\cos \left( {\sqrt x } \right)} \right) = - \sin \left( {\sqrt x } \right)\left( {\dfrac{1}{2}} \right)\left( {{x^{\dfrac{1}{2} - 1}}} \right)$
So,
$ \Rightarrow \dfrac{d}{{dx}}\left( {\cos \left( {\sqrt x } \right)} \right) = - \dfrac{1}{2}\sin \left( {\sqrt x } \right)\left( {{x^{\dfrac{{1 - 2}}{2}}}} \right)$
That is equal to,
$ \Rightarrow \dfrac{d}{{dx}}\left( {\cos \left( {\sqrt x } \right)} \right) = - \dfrac{1}{2}\sin \left( {\sqrt x } \right)\left( {{x^{ - \dfrac{1}{2}}}} \right)$
We know that ${x^{ - 1}} = \dfrac{1}{x}$ .
So,
$ \Rightarrow \dfrac{d}{{dx}}\left( {\cos \left( {\sqrt x } \right)} \right) = - \dfrac{{\sin \left( {\sqrt x } \right)}}{{2{x^{\dfrac{1}{2}}}}}$
We can write ${x^{\dfrac{1}{2}}}$ as $\sqrt x $.
$ \Rightarrow \dfrac{d}{{dx}}\left( {\cos \left( {\sqrt x } \right)} \right) = - \dfrac{{\sin \left( {\sqrt x } \right)}}{{2\sqrt x }}$
In this question, we want to find the derivative of the cosine square root of x. First, consider it as a function $y = \cos \left( {\sqrt x } \right)$. Based on the definition of differentiation, we will solve this question. The formula is $\dfrac{{dy}}{{dx}} = \mathop {\lim }\limits_{\Delta x \to 0} \dfrac{{f\left( {x + \Delta x} \right) - f\left( x \right)}}{{\Delta x}}$ . Then apply some trigonometry formulas and simplify the question.
Complete step by step solution:
The function given in this question is,
$ \Rightarrow y = \cos \left( {\sqrt x } \right)$
To solve the above function, we will apply the formula of differentiation.
$ \Rightarrow \dfrac{{dy}}{{dx}} = \mathop {\lim }\limits_{\Delta x \to 0} \dfrac{{f\left( {x + \Delta x} \right) - f\left( x \right)}}{{\Delta x}}$ ...(1)
Substitute the value of the function in equation (1).
$ \Rightarrow \dfrac{{dy}}{{dx}} = \mathop {\lim }\limits_{\Delta x \to 0} \dfrac{{\cos \left( {\sqrt {x + \Delta x} } \right) - \cos \left( {\sqrt x } \right)}}{{\Delta x}}$
Now, we already know the trigonometry formula $\cos A - \cos B = - 2\sin \left( {\dfrac{{A + B}}{2}} \right)\sin \left( {\dfrac{{A - B}}{2}} \right)$.
Here, the value of ‘A’ is $\sqrt {x + \Delta x} $ and the value of ‘B’ is $\sqrt x $.
Apply this formula and substitute the values of A and B.
$ \Rightarrow \dfrac{{dy}}{{dx}} = \mathop {\lim }\limits_{\Delta x \to 0} \dfrac{{ - 2\sin \left( {\dfrac{{\sqrt {x + \Delta x} + \sqrt x }}{2}} \right)\sin \left( {\dfrac{{\sqrt {x + \Delta x} - \sqrt x }}{2}} \right)}}{{\Delta x}}$...(2)
Now, we can write,
$ \Rightarrow \left( {\sqrt {x + \Delta x} + \sqrt x } \right)\left( {\sqrt {x + \Delta x} - \sqrt x } \right) = {\left( {\sqrt {x + \Delta x} } \right)^2} - {\left( {\sqrt x } \right)^2}$
We can cancel out the square root and square on the right-hand side.
Therefore,
$ \Rightarrow \left( {\sqrt {x + \Delta x} + \sqrt x } \right)\left( {\sqrt {x + \Delta x} - \sqrt x } \right) = x + \Delta x - x$
Apply the subtraction on the right-hand side. The subtraction of x and x is 0.
Therefore,
$ \Rightarrow \left( {\sqrt {x + \Delta x} + \sqrt x } \right)\left( {\sqrt {x + \Delta x} - \sqrt x } \right) = \Delta x$
Let us put this value in equation (2).
$ \Rightarrow \dfrac{{dy}}{{dx}} = \mathop {\lim }\limits_{\Delta x \to 0} \dfrac{{ - 2\sin \left( {\dfrac{{\sqrt {x + \Delta x} + \sqrt x }}{2}} \right)\sin \left( {\dfrac{{\sqrt {x + \Delta x} - \sqrt x }}{2}} \right)}}{{\left( {\sqrt {x + \Delta x} + \sqrt x } \right)\left( {\sqrt {x + \Delta x} - \sqrt x } \right)}}$
Let us split the denominator,
$ \Rightarrow \dfrac{{dy}}{{dx}} = \mathop {\lim }\limits_{\Delta x \to 0} \dfrac{{ - 2\sin \left( {\dfrac{{\sqrt {x + \Delta x} + \sqrt x }}{2}} \right)}}{{\left( {\sqrt {x + \Delta x} + \sqrt x } \right)}} \times \dfrac{{\sin \left( {\dfrac{{\sqrt {x + \Delta x} - \sqrt x }}{2}} \right)}}{{\left( {\sqrt {x + \Delta x} - \sqrt x } \right)}}$
Divide the numerator and the denominator by 2.
So,
$ \Rightarrow \dfrac{{dy}}{{dx}} = - \mathop {\lim }\limits_{\Delta x \to 0} \dfrac{{\sin \left( {\dfrac{{\sqrt {x + \Delta x} + \sqrt x }}{2}} \right)}}{{\left( {\sqrt {x + \Delta x} + \sqrt x } \right)}} \times \dfrac{{\sin \left( {\dfrac{{\sqrt {x + \Delta x} - \sqrt x }}{2}} \right)}}{{\left( {\dfrac{{\sqrt {x + \Delta x} - \sqrt x }}{2}} \right)}}$
Apply the limit to both functions.
$ \Rightarrow \dfrac{{dy}}{{dx}} = - \mathop {\lim }\limits_{\Delta x \to 0} \dfrac{{\sin \left( {\dfrac{{\sqrt {x + \Delta x} + \sqrt x }}{2}} \right)}}{{\left( {\sqrt {x + \Delta x} + \sqrt x } \right)}} \times \mathop {\lim }\limits_{\Delta x \to 0} \dfrac{{\sin \left( {\dfrac{{\sqrt {x + \Delta x} - \sqrt x }}{2}} \right)}}{{\left( {\dfrac{{\sqrt {x + \Delta x} - \sqrt x }}{2}} \right)}}$
Now, let us consider $\left( {\dfrac{{\sqrt {x + \Delta x} - \sqrt x }}{2}} \right) = u$.
Here, as $\Delta x \to 0$ then $u \to 0$.
So,
$ \Rightarrow \dfrac{{dy}}{{dx}} = - \mathop {\lim }\limits_{\Delta x \to 0} \dfrac{{\sin \left( {\dfrac{{\sqrt {x + \Delta x} + \sqrt x }}{2}} \right)}}{{\left( {\sqrt {x + \Delta x} + \sqrt x } \right)}} \times \mathop {\lim }\limits_{u \to 0} \dfrac{{\sin \left( u \right)}}{{\left( u \right)}}$
We know that $\mathop {\lim }\limits_{u \to 0} \dfrac{{\sin \left( u \right)}}{{\left( u \right)}} = 1$
So,
$ \Rightarrow \dfrac{{dy}}{{dx}} = - \mathop {\lim }\limits_{\Delta x \to 0} \dfrac{{\sin \left( {\dfrac{{\sqrt {x + \Delta x} + \sqrt x }}{2}} \right)}}{{\left( {\sqrt {x + \Delta x} + \sqrt x } \right)}} \times 1$
Now, apply the limit to the function.
So,
$ \Rightarrow \dfrac{{dy}}{{dx}} = - \dfrac{{\sin \left( {\dfrac{{\sqrt {x + 0} + \sqrt x }}{2}} \right)}}{{\left( {\sqrt {x + 0} + \sqrt x } \right)}}$
That is equal to,
$ \Rightarrow \dfrac{{dy}}{{dx}} = - \dfrac{{\sin \left( {\dfrac{{2\sqrt x }}{2}} \right)}}{{\left( {2\sqrt x } \right)}}$
Therefore,
$ \Rightarrow \dfrac{{dy}}{{dx}} = - \dfrac{{\sin \left( {\sqrt x } \right)}}{{2\sqrt x }}$
Hence the answer is $ - \dfrac{{\sin \left( {\sqrt x } \right)}}{{2\sqrt x }}$.
Note:
The second method to solve the question is as below.
We want to find the derivative of cosine square root x.
$ \Rightarrow \dfrac{d}{{dx}}\left( {\cos \left( {\sqrt x } \right)} \right)$
Apply the formula $\dfrac{d}{{dx}}\cos y = - \sin y\dfrac{{dy}}{{dx}}$
Put $\sqrt x $ instead of y in the above formula.
So,
$ \Rightarrow \dfrac{d}{{dx}}\left( {\cos \left( {\sqrt x } \right)} \right) = - \sin \left( {\sqrt x } \right)\dfrac{d}{{dx}}\left( {\sqrt x } \right)$
We can write $\sqrt x $ as ${x^{\dfrac{1}{2}}}$.
So,
$ \Rightarrow \dfrac{d}{{dx}}\left( {\cos \left( {\sqrt x } \right)} \right) = - \sin \left( {\sqrt x } \right)\dfrac{d}{{dx}}\left( {{x^{\dfrac{1}{2}}}} \right)$
Now, apply the formula $\dfrac{d}{{dx}}{x^n} = n{x^{n - 1}}$ .
$ \Rightarrow \dfrac{d}{{dx}}\left( {\cos \left( {\sqrt x } \right)} \right) = - \sin \left( {\sqrt x } \right)\left( {\dfrac{1}{2}} \right)\left( {{x^{\dfrac{1}{2} - 1}}} \right)$
So,
$ \Rightarrow \dfrac{d}{{dx}}\left( {\cos \left( {\sqrt x } \right)} \right) = - \dfrac{1}{2}\sin \left( {\sqrt x } \right)\left( {{x^{\dfrac{{1 - 2}}{2}}}} \right)$
That is equal to,
$ \Rightarrow \dfrac{d}{{dx}}\left( {\cos \left( {\sqrt x } \right)} \right) = - \dfrac{1}{2}\sin \left( {\sqrt x } \right)\left( {{x^{ - \dfrac{1}{2}}}} \right)$
We know that ${x^{ - 1}} = \dfrac{1}{x}$ .
So,
$ \Rightarrow \dfrac{d}{{dx}}\left( {\cos \left( {\sqrt x } \right)} \right) = - \dfrac{{\sin \left( {\sqrt x } \right)}}{{2{x^{\dfrac{1}{2}}}}}$
We can write ${x^{\dfrac{1}{2}}}$ as $\sqrt x $.
$ \Rightarrow \dfrac{d}{{dx}}\left( {\cos \left( {\sqrt x } \right)} \right) = - \dfrac{{\sin \left( {\sqrt x } \right)}}{{2\sqrt x }}$
Recently Updated Pages
Master Class 8 Maths: Engaging Questions & Answers for Success

Class 8 Question and Answer - Your Ultimate Solutions Guide

Master Class 7 Maths: Engaging Questions & Answers for Success

Class 7 Question and Answer - Your Ultimate Solutions Guide

Master Class 6 Maths: Engaging Questions & Answers for Success

Class 6 Question and Answer - Your Ultimate Solutions Guide

Trending doubts
What is meant by exothermic and endothermic reactions class 11 chemistry CBSE

Which animal has three hearts class 11 biology CBSE

10 examples of friction in our daily life

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

1 Quintal is equal to a 110 kg b 10 kg c 100kg d 1000 class 11 physics CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells

