Answer
Verified
413.1k+ views
Hint: We recall the first principle of derivative. We assume a small change in $x$ as $\delta x$ and its corresponding change in $y=f\left( x \right)$ as $\delta y$. We find the average rate of change as $\dfrac{\delta y}{\delta x}=\dfrac{f\left( x+\delta x \right)-f\left( x \right)}{\delta x}$ . We take limit $\delta x \to 0$ to find the instantaneous rate of change as derivative of $f\left( x \right)$.\[\]
Complete step-by-step solution:
We are given the function $f\left( x \right)={{\cos }^{2}}x$ in the question. Let us have$y={{\cos }^{2}}x$. Let $\delta x$ be a very small change in $x$ and the corresponding change in $y$ be $\delta y$. So we have;
\[y+\delta y={{\cos }^{2}}\left( x+\delta x \right)\]
We subtract $y$ both sides of the above equation to have;
\[\begin{align}
& \Rightarrow y+\delta y-y={{\cos }^{2}}\left( x+\delta x \right)-y \\
& \Rightarrow y+\delta y-y={{\cos }^{2}}\left( x+\delta x \right)-{{\cos }^{2}}x \\
& \Rightarrow \delta y={{\cos }^{2}}\left( x+\delta x \right)-{{\cos }^{2}}x \\
\end{align}\]
We divide $\delta x$ both sides of the above step to have;
\[\Rightarrow \dfrac{\delta y}{\delta x}=\dfrac{{{\cos }^{2}}\left( x+\delta x \right)-{{\cos }^{2}}x}{\delta x}\]
We take limit $\delta x \to 0$ both sides of the above step to have;
\[\Rightarrow \displaystyle \lim_{\delta x \to 0}\dfrac{\delta y}{\delta x}=\displaystyle \lim_{\delta x \to 0}\dfrac{{{\cos }^{2}}\left( x+\delta x \right)-{{\cos }^{2}}x}{\delta x}\]
We use the trigonometric identity ${{\cos }^{2}}B-{{\cos }^{2}}A=\sin \left( A+B \right)\sin \left( A-B \right)$ for $A=x,B=x+\delta x$ in the above step to have;
\[\begin{align}
& \Rightarrow \displaystyle \lim_{\delta x \to 0}\dfrac{\delta y}{\delta x}=\displaystyle \lim_{\delta x \to 0}\dfrac{\sin \left( x+\delta x+x \right)\sin \left( x-\delta x-x \right)}{\delta x} \\
& \Rightarrow \displaystyle \lim_{\delta x \to 0}\dfrac{\delta y}{\delta x}=\displaystyle \lim_{\delta x \to 0}\dfrac{\sin \left( 2x+\delta x \right)\sin \left( -\delta x \right)}{\delta x} \\
& \Rightarrow \displaystyle \lim_{\delta x \to 0}\dfrac{\delta y}{\delta x}=-\displaystyle \lim_{\delta x \to 0}\dfrac{\sin \left( 2x+\delta x \right)\sin \left( \delta x \right)}{\delta x} \\
\end{align}\]
We use law of product if limits in the right hand side of the above step to have;
\[\Rightarrow \displaystyle \lim_{\delta x \to 0}\dfrac{\delta y}{\delta x}=-\displaystyle \lim_{\delta x \to 0}\sin \left( 2x+\delta x \right)\cdot \displaystyle \lim_{\delta x \to 0}\dfrac{\sin \left( \delta x \right)}{\delta x}\]
We use the standard limit $\displaystyle \lim_{x \to o}\dfrac{\sin x}{x}=1$ for $x=\delta x$ in the right hand side of the above step to have;
\[\begin{align}
& \Rightarrow \displaystyle \lim_{\delta x \to 0}\dfrac{\delta y}{\delta x}=-\displaystyle \lim_{\delta x \to 0}\sin \left( 2x+\delta x \right)\cdot 1 \\
& \Rightarrow \displaystyle \lim_{\delta x \to 0}\dfrac{\delta y}{\delta x}=-\displaystyle \lim_{\delta x \to 0}\sin \left( 2x+\delta x \right) \\
& \Rightarrow \displaystyle \lim_{\delta x \to 0}\dfrac{\delta y}{\delta x}=-\sin 2x \\
\end{align}\]
We use the double angle formula $\sin 2\theta =2\sin \theta \cos \theta $ for $\theta =x$ in the right hand side of the above step to have;
\[\Rightarrow \displaystyle \lim_{\delta x \to 0}\dfrac{\delta y}{\delta x}=-2\sin x\cos \]
We know from first principle of derivative that $\displaystyle \lim_{\delta x \to 0}\dfrac{\delta y}{\delta x}=\dfrac{dy}{dx}$. So we have
\[\begin{align}
& \Rightarrow \dfrac{dy}{dx}=-2\sin x\cos x \\
& \Rightarrow \dfrac{d}{dx}\left( {{\cos }^{2}}x \right)=-2\sin x\cos x \\
\end{align}\]
Note: We can use chain rule to directly find the derivative of ${{\cos }^{2}}x$. If composite function is defined as $y=u\left( x \right),u=f\left( x \right)$ then the chain rule is given as $\dfrac{dy}{dx}=\dfrac{dy}{du}\cdot \dfrac{du}{dx}$. We can also use the first principle for derivative with a very small change $h$ as $\dfrac{d}{dx}f\left( x \right)=\displaystyle \lim_{h\to 0}\dfrac{f\left( x+h \right)-f\left( h \right)}{h}$. The derivative of the function at particular points geometrically gives the slope of the tangent to the curve of the function. The first principle is also known as the delta method.
Complete step-by-step solution:
We are given the function $f\left( x \right)={{\cos }^{2}}x$ in the question. Let us have$y={{\cos }^{2}}x$. Let $\delta x$ be a very small change in $x$ and the corresponding change in $y$ be $\delta y$. So we have;
\[y+\delta y={{\cos }^{2}}\left( x+\delta x \right)\]
We subtract $y$ both sides of the above equation to have;
\[\begin{align}
& \Rightarrow y+\delta y-y={{\cos }^{2}}\left( x+\delta x \right)-y \\
& \Rightarrow y+\delta y-y={{\cos }^{2}}\left( x+\delta x \right)-{{\cos }^{2}}x \\
& \Rightarrow \delta y={{\cos }^{2}}\left( x+\delta x \right)-{{\cos }^{2}}x \\
\end{align}\]
We divide $\delta x$ both sides of the above step to have;
\[\Rightarrow \dfrac{\delta y}{\delta x}=\dfrac{{{\cos }^{2}}\left( x+\delta x \right)-{{\cos }^{2}}x}{\delta x}\]
We take limit $\delta x \to 0$ both sides of the above step to have;
\[\Rightarrow \displaystyle \lim_{\delta x \to 0}\dfrac{\delta y}{\delta x}=\displaystyle \lim_{\delta x \to 0}\dfrac{{{\cos }^{2}}\left( x+\delta x \right)-{{\cos }^{2}}x}{\delta x}\]
We use the trigonometric identity ${{\cos }^{2}}B-{{\cos }^{2}}A=\sin \left( A+B \right)\sin \left( A-B \right)$ for $A=x,B=x+\delta x$ in the above step to have;
\[\begin{align}
& \Rightarrow \displaystyle \lim_{\delta x \to 0}\dfrac{\delta y}{\delta x}=\displaystyle \lim_{\delta x \to 0}\dfrac{\sin \left( x+\delta x+x \right)\sin \left( x-\delta x-x \right)}{\delta x} \\
& \Rightarrow \displaystyle \lim_{\delta x \to 0}\dfrac{\delta y}{\delta x}=\displaystyle \lim_{\delta x \to 0}\dfrac{\sin \left( 2x+\delta x \right)\sin \left( -\delta x \right)}{\delta x} \\
& \Rightarrow \displaystyle \lim_{\delta x \to 0}\dfrac{\delta y}{\delta x}=-\displaystyle \lim_{\delta x \to 0}\dfrac{\sin \left( 2x+\delta x \right)\sin \left( \delta x \right)}{\delta x} \\
\end{align}\]
We use law of product if limits in the right hand side of the above step to have;
\[\Rightarrow \displaystyle \lim_{\delta x \to 0}\dfrac{\delta y}{\delta x}=-\displaystyle \lim_{\delta x \to 0}\sin \left( 2x+\delta x \right)\cdot \displaystyle \lim_{\delta x \to 0}\dfrac{\sin \left( \delta x \right)}{\delta x}\]
We use the standard limit $\displaystyle \lim_{x \to o}\dfrac{\sin x}{x}=1$ for $x=\delta x$ in the right hand side of the above step to have;
\[\begin{align}
& \Rightarrow \displaystyle \lim_{\delta x \to 0}\dfrac{\delta y}{\delta x}=-\displaystyle \lim_{\delta x \to 0}\sin \left( 2x+\delta x \right)\cdot 1 \\
& \Rightarrow \displaystyle \lim_{\delta x \to 0}\dfrac{\delta y}{\delta x}=-\displaystyle \lim_{\delta x \to 0}\sin \left( 2x+\delta x \right) \\
& \Rightarrow \displaystyle \lim_{\delta x \to 0}\dfrac{\delta y}{\delta x}=-\sin 2x \\
\end{align}\]
We use the double angle formula $\sin 2\theta =2\sin \theta \cos \theta $ for $\theta =x$ in the right hand side of the above step to have;
\[\Rightarrow \displaystyle \lim_{\delta x \to 0}\dfrac{\delta y}{\delta x}=-2\sin x\cos \]
We know from first principle of derivative that $\displaystyle \lim_{\delta x \to 0}\dfrac{\delta y}{\delta x}=\dfrac{dy}{dx}$. So we have
\[\begin{align}
& \Rightarrow \dfrac{dy}{dx}=-2\sin x\cos x \\
& \Rightarrow \dfrac{d}{dx}\left( {{\cos }^{2}}x \right)=-2\sin x\cos x \\
\end{align}\]
Note: We can use chain rule to directly find the derivative of ${{\cos }^{2}}x$. If composite function is defined as $y=u\left( x \right),u=f\left( x \right)$ then the chain rule is given as $\dfrac{dy}{dx}=\dfrac{dy}{du}\cdot \dfrac{du}{dx}$. We can also use the first principle for derivative with a very small change $h$ as $\dfrac{d}{dx}f\left( x \right)=\displaystyle \lim_{h\to 0}\dfrac{f\left( x+h \right)-f\left( h \right)}{h}$. The derivative of the function at particular points geometrically gives the slope of the tangent to the curve of the function. The first principle is also known as the delta method.
Recently Updated Pages
How many sigma and pi bonds are present in HCequiv class 11 chemistry CBSE
Mark and label the given geoinformation on the outline class 11 social science CBSE
When people say No pun intended what does that mea class 8 english CBSE
Name the states which share their boundary with Indias class 9 social science CBSE
Give an account of the Northern Plains of India class 9 social science CBSE
Change the following sentences into negative and interrogative class 10 english CBSE
Trending doubts
Onam is the main festival of which state A Karnataka class 7 social science CBSE
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
Which are the Top 10 Largest Countries of the World?
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Who was the founder of muslim league A Mohmmad ali class 10 social science CBSE
Select the word that is correctly spelled a Twelveth class 10 english CBSE
Give 10 examples for herbs , shrubs , climbers , creepers