
Find the derivative of ${{\cos }^{2}}x$, by using the first principle of derivatives. \[\]
Answer
456.9k+ views
Hint: We recall the first principle of derivative. We assume a small change in $x$ as $\delta x$ and its corresponding change in $y=f\left( x \right)$ as $\delta y$. We find the average rate of change as $\dfrac{\delta y}{\delta x}=\dfrac{f\left( x+\delta x \right)-f\left( x \right)}{\delta x}$ . We take limit $\delta x \to 0$ to find the instantaneous rate of change as derivative of $f\left( x \right)$.\[\]
Complete step-by-step solution:
We are given the function $f\left( x \right)={{\cos }^{2}}x$ in the question. Let us have$y={{\cos }^{2}}x$. Let $\delta x$ be a very small change in $x$ and the corresponding change in $y$ be $\delta y$. So we have;
\[y+\delta y={{\cos }^{2}}\left( x+\delta x \right)\]
We subtract $y$ both sides of the above equation to have;
\[\begin{align}
& \Rightarrow y+\delta y-y={{\cos }^{2}}\left( x+\delta x \right)-y \\
& \Rightarrow y+\delta y-y={{\cos }^{2}}\left( x+\delta x \right)-{{\cos }^{2}}x \\
& \Rightarrow \delta y={{\cos }^{2}}\left( x+\delta x \right)-{{\cos }^{2}}x \\
\end{align}\]
We divide $\delta x$ both sides of the above step to have;
\[\Rightarrow \dfrac{\delta y}{\delta x}=\dfrac{{{\cos }^{2}}\left( x+\delta x \right)-{{\cos }^{2}}x}{\delta x}\]
We take limit $\delta x \to 0$ both sides of the above step to have;
\[\Rightarrow \displaystyle \lim_{\delta x \to 0}\dfrac{\delta y}{\delta x}=\displaystyle \lim_{\delta x \to 0}\dfrac{{{\cos }^{2}}\left( x+\delta x \right)-{{\cos }^{2}}x}{\delta x}\]
We use the trigonometric identity ${{\cos }^{2}}B-{{\cos }^{2}}A=\sin \left( A+B \right)\sin \left( A-B \right)$ for $A=x,B=x+\delta x$ in the above step to have;
\[\begin{align}
& \Rightarrow \displaystyle \lim_{\delta x \to 0}\dfrac{\delta y}{\delta x}=\displaystyle \lim_{\delta x \to 0}\dfrac{\sin \left( x+\delta x+x \right)\sin \left( x-\delta x-x \right)}{\delta x} \\
& \Rightarrow \displaystyle \lim_{\delta x \to 0}\dfrac{\delta y}{\delta x}=\displaystyle \lim_{\delta x \to 0}\dfrac{\sin \left( 2x+\delta x \right)\sin \left( -\delta x \right)}{\delta x} \\
& \Rightarrow \displaystyle \lim_{\delta x \to 0}\dfrac{\delta y}{\delta x}=-\displaystyle \lim_{\delta x \to 0}\dfrac{\sin \left( 2x+\delta x \right)\sin \left( \delta x \right)}{\delta x} \\
\end{align}\]
We use law of product if limits in the right hand side of the above step to have;
\[\Rightarrow \displaystyle \lim_{\delta x \to 0}\dfrac{\delta y}{\delta x}=-\displaystyle \lim_{\delta x \to 0}\sin \left( 2x+\delta x \right)\cdot \displaystyle \lim_{\delta x \to 0}\dfrac{\sin \left( \delta x \right)}{\delta x}\]
We use the standard limit $\displaystyle \lim_{x \to o}\dfrac{\sin x}{x}=1$ for $x=\delta x$ in the right hand side of the above step to have;
\[\begin{align}
& \Rightarrow \displaystyle \lim_{\delta x \to 0}\dfrac{\delta y}{\delta x}=-\displaystyle \lim_{\delta x \to 0}\sin \left( 2x+\delta x \right)\cdot 1 \\
& \Rightarrow \displaystyle \lim_{\delta x \to 0}\dfrac{\delta y}{\delta x}=-\displaystyle \lim_{\delta x \to 0}\sin \left( 2x+\delta x \right) \\
& \Rightarrow \displaystyle \lim_{\delta x \to 0}\dfrac{\delta y}{\delta x}=-\sin 2x \\
\end{align}\]
We use the double angle formula $\sin 2\theta =2\sin \theta \cos \theta $ for $\theta =x$ in the right hand side of the above step to have;
\[\Rightarrow \displaystyle \lim_{\delta x \to 0}\dfrac{\delta y}{\delta x}=-2\sin x\cos \]
We know from first principle of derivative that $\displaystyle \lim_{\delta x \to 0}\dfrac{\delta y}{\delta x}=\dfrac{dy}{dx}$. So we have
\[\begin{align}
& \Rightarrow \dfrac{dy}{dx}=-2\sin x\cos x \\
& \Rightarrow \dfrac{d}{dx}\left( {{\cos }^{2}}x \right)=-2\sin x\cos x \\
\end{align}\]
Note: We can use chain rule to directly find the derivative of ${{\cos }^{2}}x$. If composite function is defined as $y=u\left( x \right),u=f\left( x \right)$ then the chain rule is given as $\dfrac{dy}{dx}=\dfrac{dy}{du}\cdot \dfrac{du}{dx}$. We can also use the first principle for derivative with a very small change $h$ as $\dfrac{d}{dx}f\left( x \right)=\displaystyle \lim_{h\to 0}\dfrac{f\left( x+h \right)-f\left( h \right)}{h}$. The derivative of the function at particular points geometrically gives the slope of the tangent to the curve of the function. The first principle is also known as the delta method.
Complete step-by-step solution:
We are given the function $f\left( x \right)={{\cos }^{2}}x$ in the question. Let us have$y={{\cos }^{2}}x$. Let $\delta x$ be a very small change in $x$ and the corresponding change in $y$ be $\delta y$. So we have;
\[y+\delta y={{\cos }^{2}}\left( x+\delta x \right)\]
We subtract $y$ both sides of the above equation to have;
\[\begin{align}
& \Rightarrow y+\delta y-y={{\cos }^{2}}\left( x+\delta x \right)-y \\
& \Rightarrow y+\delta y-y={{\cos }^{2}}\left( x+\delta x \right)-{{\cos }^{2}}x \\
& \Rightarrow \delta y={{\cos }^{2}}\left( x+\delta x \right)-{{\cos }^{2}}x \\
\end{align}\]
We divide $\delta x$ both sides of the above step to have;
\[\Rightarrow \dfrac{\delta y}{\delta x}=\dfrac{{{\cos }^{2}}\left( x+\delta x \right)-{{\cos }^{2}}x}{\delta x}\]
We take limit $\delta x \to 0$ both sides of the above step to have;
\[\Rightarrow \displaystyle \lim_{\delta x \to 0}\dfrac{\delta y}{\delta x}=\displaystyle \lim_{\delta x \to 0}\dfrac{{{\cos }^{2}}\left( x+\delta x \right)-{{\cos }^{2}}x}{\delta x}\]
We use the trigonometric identity ${{\cos }^{2}}B-{{\cos }^{2}}A=\sin \left( A+B \right)\sin \left( A-B \right)$ for $A=x,B=x+\delta x$ in the above step to have;
\[\begin{align}
& \Rightarrow \displaystyle \lim_{\delta x \to 0}\dfrac{\delta y}{\delta x}=\displaystyle \lim_{\delta x \to 0}\dfrac{\sin \left( x+\delta x+x \right)\sin \left( x-\delta x-x \right)}{\delta x} \\
& \Rightarrow \displaystyle \lim_{\delta x \to 0}\dfrac{\delta y}{\delta x}=\displaystyle \lim_{\delta x \to 0}\dfrac{\sin \left( 2x+\delta x \right)\sin \left( -\delta x \right)}{\delta x} \\
& \Rightarrow \displaystyle \lim_{\delta x \to 0}\dfrac{\delta y}{\delta x}=-\displaystyle \lim_{\delta x \to 0}\dfrac{\sin \left( 2x+\delta x \right)\sin \left( \delta x \right)}{\delta x} \\
\end{align}\]
We use law of product if limits in the right hand side of the above step to have;
\[\Rightarrow \displaystyle \lim_{\delta x \to 0}\dfrac{\delta y}{\delta x}=-\displaystyle \lim_{\delta x \to 0}\sin \left( 2x+\delta x \right)\cdot \displaystyle \lim_{\delta x \to 0}\dfrac{\sin \left( \delta x \right)}{\delta x}\]
We use the standard limit $\displaystyle \lim_{x \to o}\dfrac{\sin x}{x}=1$ for $x=\delta x$ in the right hand side of the above step to have;
\[\begin{align}
& \Rightarrow \displaystyle \lim_{\delta x \to 0}\dfrac{\delta y}{\delta x}=-\displaystyle \lim_{\delta x \to 0}\sin \left( 2x+\delta x \right)\cdot 1 \\
& \Rightarrow \displaystyle \lim_{\delta x \to 0}\dfrac{\delta y}{\delta x}=-\displaystyle \lim_{\delta x \to 0}\sin \left( 2x+\delta x \right) \\
& \Rightarrow \displaystyle \lim_{\delta x \to 0}\dfrac{\delta y}{\delta x}=-\sin 2x \\
\end{align}\]
We use the double angle formula $\sin 2\theta =2\sin \theta \cos \theta $ for $\theta =x$ in the right hand side of the above step to have;
\[\Rightarrow \displaystyle \lim_{\delta x \to 0}\dfrac{\delta y}{\delta x}=-2\sin x\cos \]
We know from first principle of derivative that $\displaystyle \lim_{\delta x \to 0}\dfrac{\delta y}{\delta x}=\dfrac{dy}{dx}$. So we have
\[\begin{align}
& \Rightarrow \dfrac{dy}{dx}=-2\sin x\cos x \\
& \Rightarrow \dfrac{d}{dx}\left( {{\cos }^{2}}x \right)=-2\sin x\cos x \\
\end{align}\]
Note: We can use chain rule to directly find the derivative of ${{\cos }^{2}}x$. If composite function is defined as $y=u\left( x \right),u=f\left( x \right)$ then the chain rule is given as $\dfrac{dy}{dx}=\dfrac{dy}{du}\cdot \dfrac{du}{dx}$. We can also use the first principle for derivative with a very small change $h$ as $\dfrac{d}{dx}f\left( x \right)=\displaystyle \lim_{h\to 0}\dfrac{f\left( x+h \right)-f\left( h \right)}{h}$. The derivative of the function at particular points geometrically gives the slope of the tangent to the curve of the function. The first principle is also known as the delta method.
Recently Updated Pages
Glucose when reduced with HI and red Phosphorus gives class 11 chemistry CBSE

The highest possible oxidation states of Uranium and class 11 chemistry CBSE

Find the value of x if the mode of the following data class 11 maths CBSE

Which of the following can be used in the Friedel Crafts class 11 chemistry CBSE

A sphere of mass 40 kg is attracted by a second sphere class 11 physics CBSE

Statement I Reactivity of aluminium decreases when class 11 chemistry CBSE

Trending doubts
10 examples of friction in our daily life

The correct order of melting point of 14th group elements class 11 chemistry CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

State and prove Bernoullis theorem class 11 physics CBSE

What organs are located on the left side of your body class 11 biology CBSE
