
Find the derivative of ${{\cos }^{2}}x$, by using the first principle of derivatives. \[\]
Answer
463.8k+ views
Hint: We recall the first principle of derivative. We assume a small change in $x$ as $\delta x$ and its corresponding change in $y=f\left( x \right)$ as $\delta y$. We find the average rate of change as $\dfrac{\delta y}{\delta x}=\dfrac{f\left( x+\delta x \right)-f\left( x \right)}{\delta x}$ . We take limit $\delta x \to 0$ to find the instantaneous rate of change as derivative of $f\left( x \right)$.\[\]
Complete step-by-step solution:
We are given the function $f\left( x \right)={{\cos }^{2}}x$ in the question. Let us have$y={{\cos }^{2}}x$. Let $\delta x$ be a very small change in $x$ and the corresponding change in $y$ be $\delta y$. So we have;
\[y+\delta y={{\cos }^{2}}\left( x+\delta x \right)\]
We subtract $y$ both sides of the above equation to have;
\[\begin{align}
& \Rightarrow y+\delta y-y={{\cos }^{2}}\left( x+\delta x \right)-y \\
& \Rightarrow y+\delta y-y={{\cos }^{2}}\left( x+\delta x \right)-{{\cos }^{2}}x \\
& \Rightarrow \delta y={{\cos }^{2}}\left( x+\delta x \right)-{{\cos }^{2}}x \\
\end{align}\]
We divide $\delta x$ both sides of the above step to have;
\[\Rightarrow \dfrac{\delta y}{\delta x}=\dfrac{{{\cos }^{2}}\left( x+\delta x \right)-{{\cos }^{2}}x}{\delta x}\]
We take limit $\delta x \to 0$ both sides of the above step to have;
\[\Rightarrow \displaystyle \lim_{\delta x \to 0}\dfrac{\delta y}{\delta x}=\displaystyle \lim_{\delta x \to 0}\dfrac{{{\cos }^{2}}\left( x+\delta x \right)-{{\cos }^{2}}x}{\delta x}\]
We use the trigonometric identity ${{\cos }^{2}}B-{{\cos }^{2}}A=\sin \left( A+B \right)\sin \left( A-B \right)$ for $A=x,B=x+\delta x$ in the above step to have;
\[\begin{align}
& \Rightarrow \displaystyle \lim_{\delta x \to 0}\dfrac{\delta y}{\delta x}=\displaystyle \lim_{\delta x \to 0}\dfrac{\sin \left( x+\delta x+x \right)\sin \left( x-\delta x-x \right)}{\delta x} \\
& \Rightarrow \displaystyle \lim_{\delta x \to 0}\dfrac{\delta y}{\delta x}=\displaystyle \lim_{\delta x \to 0}\dfrac{\sin \left( 2x+\delta x \right)\sin \left( -\delta x \right)}{\delta x} \\
& \Rightarrow \displaystyle \lim_{\delta x \to 0}\dfrac{\delta y}{\delta x}=-\displaystyle \lim_{\delta x \to 0}\dfrac{\sin \left( 2x+\delta x \right)\sin \left( \delta x \right)}{\delta x} \\
\end{align}\]
We use law of product if limits in the right hand side of the above step to have;
\[\Rightarrow \displaystyle \lim_{\delta x \to 0}\dfrac{\delta y}{\delta x}=-\displaystyle \lim_{\delta x \to 0}\sin \left( 2x+\delta x \right)\cdot \displaystyle \lim_{\delta x \to 0}\dfrac{\sin \left( \delta x \right)}{\delta x}\]
We use the standard limit $\displaystyle \lim_{x \to o}\dfrac{\sin x}{x}=1$ for $x=\delta x$ in the right hand side of the above step to have;
\[\begin{align}
& \Rightarrow \displaystyle \lim_{\delta x \to 0}\dfrac{\delta y}{\delta x}=-\displaystyle \lim_{\delta x \to 0}\sin \left( 2x+\delta x \right)\cdot 1 \\
& \Rightarrow \displaystyle \lim_{\delta x \to 0}\dfrac{\delta y}{\delta x}=-\displaystyle \lim_{\delta x \to 0}\sin \left( 2x+\delta x \right) \\
& \Rightarrow \displaystyle \lim_{\delta x \to 0}\dfrac{\delta y}{\delta x}=-\sin 2x \\
\end{align}\]
We use the double angle formula $\sin 2\theta =2\sin \theta \cos \theta $ for $\theta =x$ in the right hand side of the above step to have;
\[\Rightarrow \displaystyle \lim_{\delta x \to 0}\dfrac{\delta y}{\delta x}=-2\sin x\cos \]
We know from first principle of derivative that $\displaystyle \lim_{\delta x \to 0}\dfrac{\delta y}{\delta x}=\dfrac{dy}{dx}$. So we have
\[\begin{align}
& \Rightarrow \dfrac{dy}{dx}=-2\sin x\cos x \\
& \Rightarrow \dfrac{d}{dx}\left( {{\cos }^{2}}x \right)=-2\sin x\cos x \\
\end{align}\]
Note: We can use chain rule to directly find the derivative of ${{\cos }^{2}}x$. If composite function is defined as $y=u\left( x \right),u=f\left( x \right)$ then the chain rule is given as $\dfrac{dy}{dx}=\dfrac{dy}{du}\cdot \dfrac{du}{dx}$. We can also use the first principle for derivative with a very small change $h$ as $\dfrac{d}{dx}f\left( x \right)=\displaystyle \lim_{h\to 0}\dfrac{f\left( x+h \right)-f\left( h \right)}{h}$. The derivative of the function at particular points geometrically gives the slope of the tangent to the curve of the function. The first principle is also known as the delta method.
Complete step-by-step solution:
We are given the function $f\left( x \right)={{\cos }^{2}}x$ in the question. Let us have$y={{\cos }^{2}}x$. Let $\delta x$ be a very small change in $x$ and the corresponding change in $y$ be $\delta y$. So we have;
\[y+\delta y={{\cos }^{2}}\left( x+\delta x \right)\]
We subtract $y$ both sides of the above equation to have;
\[\begin{align}
& \Rightarrow y+\delta y-y={{\cos }^{2}}\left( x+\delta x \right)-y \\
& \Rightarrow y+\delta y-y={{\cos }^{2}}\left( x+\delta x \right)-{{\cos }^{2}}x \\
& \Rightarrow \delta y={{\cos }^{2}}\left( x+\delta x \right)-{{\cos }^{2}}x \\
\end{align}\]
We divide $\delta x$ both sides of the above step to have;
\[\Rightarrow \dfrac{\delta y}{\delta x}=\dfrac{{{\cos }^{2}}\left( x+\delta x \right)-{{\cos }^{2}}x}{\delta x}\]
We take limit $\delta x \to 0$ both sides of the above step to have;
\[\Rightarrow \displaystyle \lim_{\delta x \to 0}\dfrac{\delta y}{\delta x}=\displaystyle \lim_{\delta x \to 0}\dfrac{{{\cos }^{2}}\left( x+\delta x \right)-{{\cos }^{2}}x}{\delta x}\]
We use the trigonometric identity ${{\cos }^{2}}B-{{\cos }^{2}}A=\sin \left( A+B \right)\sin \left( A-B \right)$ for $A=x,B=x+\delta x$ in the above step to have;
\[\begin{align}
& \Rightarrow \displaystyle \lim_{\delta x \to 0}\dfrac{\delta y}{\delta x}=\displaystyle \lim_{\delta x \to 0}\dfrac{\sin \left( x+\delta x+x \right)\sin \left( x-\delta x-x \right)}{\delta x} \\
& \Rightarrow \displaystyle \lim_{\delta x \to 0}\dfrac{\delta y}{\delta x}=\displaystyle \lim_{\delta x \to 0}\dfrac{\sin \left( 2x+\delta x \right)\sin \left( -\delta x \right)}{\delta x} \\
& \Rightarrow \displaystyle \lim_{\delta x \to 0}\dfrac{\delta y}{\delta x}=-\displaystyle \lim_{\delta x \to 0}\dfrac{\sin \left( 2x+\delta x \right)\sin \left( \delta x \right)}{\delta x} \\
\end{align}\]
We use law of product if limits in the right hand side of the above step to have;
\[\Rightarrow \displaystyle \lim_{\delta x \to 0}\dfrac{\delta y}{\delta x}=-\displaystyle \lim_{\delta x \to 0}\sin \left( 2x+\delta x \right)\cdot \displaystyle \lim_{\delta x \to 0}\dfrac{\sin \left( \delta x \right)}{\delta x}\]
We use the standard limit $\displaystyle \lim_{x \to o}\dfrac{\sin x}{x}=1$ for $x=\delta x$ in the right hand side of the above step to have;
\[\begin{align}
& \Rightarrow \displaystyle \lim_{\delta x \to 0}\dfrac{\delta y}{\delta x}=-\displaystyle \lim_{\delta x \to 0}\sin \left( 2x+\delta x \right)\cdot 1 \\
& \Rightarrow \displaystyle \lim_{\delta x \to 0}\dfrac{\delta y}{\delta x}=-\displaystyle \lim_{\delta x \to 0}\sin \left( 2x+\delta x \right) \\
& \Rightarrow \displaystyle \lim_{\delta x \to 0}\dfrac{\delta y}{\delta x}=-\sin 2x \\
\end{align}\]
We use the double angle formula $\sin 2\theta =2\sin \theta \cos \theta $ for $\theta =x$ in the right hand side of the above step to have;
\[\Rightarrow \displaystyle \lim_{\delta x \to 0}\dfrac{\delta y}{\delta x}=-2\sin x\cos \]
We know from first principle of derivative that $\displaystyle \lim_{\delta x \to 0}\dfrac{\delta y}{\delta x}=\dfrac{dy}{dx}$. So we have
\[\begin{align}
& \Rightarrow \dfrac{dy}{dx}=-2\sin x\cos x \\
& \Rightarrow \dfrac{d}{dx}\left( {{\cos }^{2}}x \right)=-2\sin x\cos x \\
\end{align}\]
Note: We can use chain rule to directly find the derivative of ${{\cos }^{2}}x$. If composite function is defined as $y=u\left( x \right),u=f\left( x \right)$ then the chain rule is given as $\dfrac{dy}{dx}=\dfrac{dy}{du}\cdot \dfrac{du}{dx}$. We can also use the first principle for derivative with a very small change $h$ as $\dfrac{d}{dx}f\left( x \right)=\displaystyle \lim_{h\to 0}\dfrac{f\left( x+h \right)-f\left( h \right)}{h}$. The derivative of the function at particular points geometrically gives the slope of the tangent to the curve of the function. The first principle is also known as the delta method.
Recently Updated Pages
The correct geometry and hybridization for XeF4 are class 11 chemistry CBSE

Water softening by Clarks process uses ACalcium bicarbonate class 11 chemistry CBSE

With reference to graphite and diamond which of the class 11 chemistry CBSE

A certain household has consumed 250 units of energy class 11 physics CBSE

The lightest metal known is A beryllium B lithium C class 11 chemistry CBSE

What is the formula mass of the iodine molecule class 11 chemistry CBSE

Trending doubts
Why was the Vernacular Press Act passed by British class 11 social science CBSE

Arrange Water ethanol and phenol in increasing order class 11 chemistry CBSE

Name the nuclear plant located in Uttar Pradesh class 11 social science CBSE

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

What steps did the French revolutionaries take to create class 11 social science CBSE

How did silk routes link the world Explain with three class 11 social science CBSE
