
How do you find the derivative of $ \arcsin (2x) $?
Answer
546.3k+ views
Hint: To differentiate the above equation we need to know that the above equation is an inverse trigonometric sine function of 2x. This function can be differentiated by using the chain rule with respect to the variable x.
Complete step by step answer:
$ \arcsin (2x) $ is an inverse trigonometric function which can also be written as \[{\sin ^{ - 1}}x\]. -1 Here is just a way of showing that it is inverse of sin\[x\].Inverse sine does the opposite of sin. Sin function gives the angle which is calculated by dividing the opposite side and hypotenuse in a right-angle triangle, but the inverse of it gives the measure of an angle.
The above equation is a composite function which means it contains a function inside another function.
Suppose f(x) and g(x) are two different functions. So, the composite of this will be f(g(x)).
Similarly,2x is inside arcsin function
First step is to differentiate by applying chain rule. Chain rule can be written as:
\[\dfrac{{dy}}{{dx}} = \dfrac{{dy}}{{du}} \cdot \dfrac{{du}}{{dx}}\]
So, by differentiating using chain rule we get,
Let \[2x = u\]
\[\dfrac{d}{{dx}}(\arcsin (2x)) = \dfrac{d}{{du}}(\arcsin (u)).\dfrac{d}{{dx}}2x\]
Now, differentiate $ \arcsin (2x) $ which is a common derivative
\[\dfrac{d}{{du}}(\arcsin (u)) = \dfrac{1}{{\sqrt {1 - {u^2}} }}\]
And differentiate the next term,
\[\dfrac{d}{{dx}}(2x) = 2\]
Therefore, substituting the differentiated value we get,
\[ = \dfrac{1}{{\sqrt {1 - {u^2}} }} \cdot 2\]
Substitute u=2\[x\]
\[ = \dfrac{1}{{\sqrt {1 - {{(2x)}^2}} }} \cdot 2\]
Further multiplying it we get,
\[ = \dfrac{2}{{\sqrt {1 - 4{x^2}} }}\]
Therefore, we get the above expression as the derivative of $ \arcsin (2x) $ .
Note:
In the above question, an alternative method of derivation is by following the general rule of this type of trigonometric function where derivative of the inverse of the sine function is \[\dfrac{{u'}}{{\sqrt {1 - {u^2}} }}\]
Further by substituting the value of u=2\[x\] and \[u'\]=2 we get the same solution as above.
Complete step by step answer:
$ \arcsin (2x) $ is an inverse trigonometric function which can also be written as \[{\sin ^{ - 1}}x\]. -1 Here is just a way of showing that it is inverse of sin\[x\].Inverse sine does the opposite of sin. Sin function gives the angle which is calculated by dividing the opposite side and hypotenuse in a right-angle triangle, but the inverse of it gives the measure of an angle.
The above equation is a composite function which means it contains a function inside another function.
Suppose f(x) and g(x) are two different functions. So, the composite of this will be f(g(x)).
Similarly,2x is inside arcsin function
First step is to differentiate by applying chain rule. Chain rule can be written as:
\[\dfrac{{dy}}{{dx}} = \dfrac{{dy}}{{du}} \cdot \dfrac{{du}}{{dx}}\]
So, by differentiating using chain rule we get,
Let \[2x = u\]
\[\dfrac{d}{{dx}}(\arcsin (2x)) = \dfrac{d}{{du}}(\arcsin (u)).\dfrac{d}{{dx}}2x\]
Now, differentiate $ \arcsin (2x) $ which is a common derivative
\[\dfrac{d}{{du}}(\arcsin (u)) = \dfrac{1}{{\sqrt {1 - {u^2}} }}\]
And differentiate the next term,
\[\dfrac{d}{{dx}}(2x) = 2\]
Therefore, substituting the differentiated value we get,
\[ = \dfrac{1}{{\sqrt {1 - {u^2}} }} \cdot 2\]
Substitute u=2\[x\]
\[ = \dfrac{1}{{\sqrt {1 - {{(2x)}^2}} }} \cdot 2\]
Further multiplying it we get,
\[ = \dfrac{2}{{\sqrt {1 - 4{x^2}} }}\]
Therefore, we get the above expression as the derivative of $ \arcsin (2x) $ .
Note:
In the above question, an alternative method of derivation is by following the general rule of this type of trigonometric function where derivative of the inverse of the sine function is \[\dfrac{{u'}}{{\sqrt {1 - {u^2}} }}\]
Further by substituting the value of u=2\[x\] and \[u'\]=2 we get the same solution as above.
Recently Updated Pages
Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 12 Biology: Engaging Questions & Answers for Success

Master Class 12 Physics: Engaging Questions & Answers for Success

Master Class 8 Maths: Engaging Questions & Answers for Success

Class 8 Question and Answer - Your Ultimate Solutions Guide

Trending doubts
Why is there a time difference of about 5 hours between class 10 social science CBSE

Write a letter to the principal requesting him to grant class 10 english CBSE

What is the median of the first 10 natural numbers class 10 maths CBSE

The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths

Which of the following does not have a fundamental class 10 physics CBSE

State and prove converse of BPT Basic Proportionality class 10 maths CBSE

