
Find the degree measure corresponding to the following radian measures $\left( \text{use }\pi =\dfrac{22}{7} \right)$.
${{\left( 1 \right)}^{c}}$
Answer
607.2k+ views
Hint: We will apply here the relation between radians and degrees. This relation is given numerically by ${{\left( \pi \right)}^{c}}={{180}^{\circ }}$. If we divide the expression by $\pi $ to both the denominators the we get the other relation between radians and degree and that is,
$\begin{align}
& {{\left( \dfrac{\pi }{\pi } \right)}^{c}}={{\left( \dfrac{180}{\pi } \right)}^{\circ }} \\
& \Rightarrow {{\left( 1 \right)}^{c}}={{\left( \dfrac{180}{\pi } \right)}^{\circ }} \\
\end{align}$
Complete step-by-step answer:
Now, we will consider the radians ${{\left( 1 \right)}^{c}}$ and we will convert it into its degree. We will do this with the help of the formula which is given by ${{\left( 1 \right)}^{c}}={{\left( \dfrac{180}{\pi } \right)}^{\circ }}$. So, we can directly write ${{\left( 1 \right)}^{c}}={{\left( \dfrac{180}{\pi } \right)}^{\circ }}$ and substitute $\pi =\dfrac{22}{7}$ in this equation to get the answer. This can be done as
$\begin{align}
& {{\left( 1 \right)}^{c}}={{\left( \dfrac{180}{\pi } \right)}^{\circ }} \\
& \Rightarrow {{\left( 1 \right)}^{c}}={{\left( \dfrac{180}{\dfrac{22}{7}} \right)}^{\circ }} \\
& \Rightarrow {{\left( 1 \right)}^{c}}={{\left( \dfrac{180}{22}\times 7 \right)}^{\circ }} \\
& \Rightarrow {{\left( 1 \right)}^{c}}={{\left( \dfrac{90}{11}\times 7 \right)}^{\circ }} \\
& \Rightarrow {{\left( 1 \right)}^{c}}={{\left( \dfrac{630}{11} \right)}^{\circ }} \\
& \Rightarrow {{\left( 1 \right)}^{c}}={{\left( 57.\overline{27} \right)}^{\circ }} \\
\end{align}$
The value ${{\left( 57.\overline{27} \right)}^{\circ }}$ is approximately equal to ${{\left( 1 \right)}^{c}}={{57.3}^{\text{o}}}$. Hence, the radian ${{\left( 1 \right)}^{c}}$ is equal to ${{\left( 57.32 \right)}^{\circ }}$ in degrees.
Note: Alternatively we can solve the question as ${{\left( 1 \right)}^{c}}=\left( 1 \right)\times {{\left( 1 \right)}^{c}}$. By substituting the value of ${{\left( 1 \right)}^{c}}$ we will have,
$\begin{align}
& {{\left( 1 \right)}^{c}}=\left( 1 \right)\times {{\left( 1 \right)}^{c}} \\
& \Rightarrow \left( 1 \right)\times {{\left( 1 \right)}^{c}}=\left( 1 \right)\times {{\left( \dfrac{180}{\pi } \right)}^{\circ }} \\
\end{align}$
This can be written as $\left( 1 \right)\times {{\left( 1 \right)}^{c}}=\left( 1 \right)\times {{\left( \dfrac{180}{\pi } \right)}^{\circ }}$. Therefore we get,
$\begin{align}
& \left( 1 \right)\times {{\left( 1 \right)}^{c}}=\left( 1 \right)\times {{\left( \dfrac{180}{\pi } \right)}^{\circ }} \\
& \Rightarrow \left( 1 \right)\times {{\left( 1 \right)}^{c}}={{\left( \left( 1 \right)\times \dfrac{180}{\pi } \right)}^{\circ }} \\
& \Rightarrow \left( 1 \right)\times {{\left( 1 \right)}^{c}}={{\left( \dfrac{180}{\pi } \right)}^{\circ }} \\
\end{align}$
Now we will substitute the value of $\pi =3.14$ approx. Therefore we have,
$\begin{align}
& \left( 1 \right)\times {{\left( 1 \right)}^{c}}={{\left( \dfrac{180}{\pi } \right)}^{\circ }} \\
& \Rightarrow \left( 1 \right)\times {{\left( 1 \right)}^{c}}={{\left( \dfrac{180}{3.14} \right)}^{\circ }} \\
& \Rightarrow \left( 1 \right)\times {{\left( 1 \right)}^{c}}={{\left( 57.32 \right)}^{\circ }} \\
\end{align}$
Hence, the radian ${{\left( 1 \right)}^{c}}$ is equal to ${{\left( 57.32 \right)}^{\circ }}$ in degrees. The radians can also be written directly as substituting 1 radian equal to 57.296 degrees or approximately 1 radian equals to 57.3 degrees. Numerically this can be written as ${{\left( 1 \right)}^{c}}={{57.3}^{\text{o}}}$.
$\begin{align}
& {{\left( \dfrac{\pi }{\pi } \right)}^{c}}={{\left( \dfrac{180}{\pi } \right)}^{\circ }} \\
& \Rightarrow {{\left( 1 \right)}^{c}}={{\left( \dfrac{180}{\pi } \right)}^{\circ }} \\
\end{align}$
Complete step-by-step answer:
Now, we will consider the radians ${{\left( 1 \right)}^{c}}$ and we will convert it into its degree. We will do this with the help of the formula which is given by ${{\left( 1 \right)}^{c}}={{\left( \dfrac{180}{\pi } \right)}^{\circ }}$. So, we can directly write ${{\left( 1 \right)}^{c}}={{\left( \dfrac{180}{\pi } \right)}^{\circ }}$ and substitute $\pi =\dfrac{22}{7}$ in this equation to get the answer. This can be done as
$\begin{align}
& {{\left( 1 \right)}^{c}}={{\left( \dfrac{180}{\pi } \right)}^{\circ }} \\
& \Rightarrow {{\left( 1 \right)}^{c}}={{\left( \dfrac{180}{\dfrac{22}{7}} \right)}^{\circ }} \\
& \Rightarrow {{\left( 1 \right)}^{c}}={{\left( \dfrac{180}{22}\times 7 \right)}^{\circ }} \\
& \Rightarrow {{\left( 1 \right)}^{c}}={{\left( \dfrac{90}{11}\times 7 \right)}^{\circ }} \\
& \Rightarrow {{\left( 1 \right)}^{c}}={{\left( \dfrac{630}{11} \right)}^{\circ }} \\
& \Rightarrow {{\left( 1 \right)}^{c}}={{\left( 57.\overline{27} \right)}^{\circ }} \\
\end{align}$
The value ${{\left( 57.\overline{27} \right)}^{\circ }}$ is approximately equal to ${{\left( 1 \right)}^{c}}={{57.3}^{\text{o}}}$. Hence, the radian ${{\left( 1 \right)}^{c}}$ is equal to ${{\left( 57.32 \right)}^{\circ }}$ in degrees.
Note: Alternatively we can solve the question as ${{\left( 1 \right)}^{c}}=\left( 1 \right)\times {{\left( 1 \right)}^{c}}$. By substituting the value of ${{\left( 1 \right)}^{c}}$ we will have,
$\begin{align}
& {{\left( 1 \right)}^{c}}=\left( 1 \right)\times {{\left( 1 \right)}^{c}} \\
& \Rightarrow \left( 1 \right)\times {{\left( 1 \right)}^{c}}=\left( 1 \right)\times {{\left( \dfrac{180}{\pi } \right)}^{\circ }} \\
\end{align}$
This can be written as $\left( 1 \right)\times {{\left( 1 \right)}^{c}}=\left( 1 \right)\times {{\left( \dfrac{180}{\pi } \right)}^{\circ }}$. Therefore we get,
$\begin{align}
& \left( 1 \right)\times {{\left( 1 \right)}^{c}}=\left( 1 \right)\times {{\left( \dfrac{180}{\pi } \right)}^{\circ }} \\
& \Rightarrow \left( 1 \right)\times {{\left( 1 \right)}^{c}}={{\left( \left( 1 \right)\times \dfrac{180}{\pi } \right)}^{\circ }} \\
& \Rightarrow \left( 1 \right)\times {{\left( 1 \right)}^{c}}={{\left( \dfrac{180}{\pi } \right)}^{\circ }} \\
\end{align}$
Now we will substitute the value of $\pi =3.14$ approx. Therefore we have,
$\begin{align}
& \left( 1 \right)\times {{\left( 1 \right)}^{c}}={{\left( \dfrac{180}{\pi } \right)}^{\circ }} \\
& \Rightarrow \left( 1 \right)\times {{\left( 1 \right)}^{c}}={{\left( \dfrac{180}{3.14} \right)}^{\circ }} \\
& \Rightarrow \left( 1 \right)\times {{\left( 1 \right)}^{c}}={{\left( 57.32 \right)}^{\circ }} \\
\end{align}$
Hence, the radian ${{\left( 1 \right)}^{c}}$ is equal to ${{\left( 57.32 \right)}^{\circ }}$ in degrees. The radians can also be written directly as substituting 1 radian equal to 57.296 degrees or approximately 1 radian equals to 57.3 degrees. Numerically this can be written as ${{\left( 1 \right)}^{c}}={{57.3}^{\text{o}}}$.
Recently Updated Pages
Master Class 10 Computer Science: Engaging Questions & Answers for Success

Master Class 10 General Knowledge: Engaging Questions & Answers for Success

Master Class 10 English: Engaging Questions & Answers for Success

Master Class 10 Social Science: Engaging Questions & Answers for Success

Master Class 10 Maths: Engaging Questions & Answers for Success

Master Class 10 Science: Engaging Questions & Answers for Success

Trending doubts
What is the median of the first 10 natural numbers class 10 maths CBSE

Which women's tennis player has 24 Grand Slam singles titles?

Who is the Brand Ambassador of Incredible India?

Why is there a time difference of about 5 hours between class 10 social science CBSE

Write a letter to the principal requesting him to grant class 10 english CBSE

State and prove converse of BPT Basic Proportionality class 10 maths CBSE

