# Find the cube root of $38+17\sqrt{5}$.

Last updated date: 20th Mar 2023

•

Total views: 307.2k

•

Views today: 5.85k

Answer

Verified

307.2k+ views

Hint: For an irrational number, the irrational part i.e. the number inside the square root is the same for the number and it’s cube root. So, we can assume the cube root of $38+17\sqrt{5}$ as $a+b\sqrt{5}$ .

Before proceeding with the question, we must know that for an irrational number, the irrational part i.e. the number inside the square root is the same for the number and it’s cube root.

In the question, we are asked to find the cube root of an irrational number which is $38+17\sqrt{5}$. Since the irrational part i.e. the number inside the square root is the same for the number and it’s cube root, we can assume the cube root of $38+17\sqrt{5}$ as $a+b\sqrt{5}$.

As $a+b\sqrt{5}$ is the cube root of $38+17\sqrt{5}$, we can say that the cube of $a+b\sqrt{5}$ is equal to $38+17\sqrt{5}$. Hence, we can write,

\[{{\left( a+b\sqrt{5} \right)}^{3}}=38+17\sqrt{5}............\left( 1 \right)\]

Also, we have a formula which can be used to solve the above equation. The formula is,

${{\left( x+y \right)}^{3}}={{x}^{3}}+{{y}^{3}}+3{{x}^{2}}y+3x{{y}^{2}}................\left( 2 \right)$

From equation $\left( 1 \right)$, substituting $x=a$ and $y=b\sqrt{5}$ in equation $\left( 2 \right)$, we get.

\[\begin{align}

& {{\left( a+b\sqrt{5} \right)}^{3}}={{a}^{3}}+{{\left( b\sqrt{5} \right)}^{3}}+3{{a}^{2}}\left( b\sqrt{5} \right)+3a{{\left( b\sqrt{5} \right)}^{2}} \\

& \Rightarrow {{\left( a+b\sqrt{5} \right)}^{3}}={{a}^{3}}+5{{b}^{3}}\sqrt{5}+3{{a}^{2}}b\sqrt{5}+15a{{b}^{2}} \\

& \Rightarrow {{\left( a+b\sqrt{5} \right)}^{3}}={{a}^{3}}+15a{{b}^{2}}+5{{b}^{3}}\sqrt{5}+3{{a}^{2}}b\sqrt{5} \\

& \Rightarrow {{\left( a+b\sqrt{5} \right)}^{3}}={{a}^{3}}+15a{{b}^{2}}+\sqrt{5}\left( 5{{b}^{3}}+3{{a}^{2}}b \right)..........\left( 3 \right) \\

\end{align}\]

Substituting \[{{\left( a+b\sqrt{5} \right)}^{3}}={{a}^{3}}+15a{{b}^{2}}+\sqrt{5}\left( 5{{b}^{3}}+3{{a}^{2}}b \right)\] from equation $\left( 3 \right)$ in equation $\left( 1 \right)$, we get,

\[{{a}^{3}}+15a{{b}^{2}}+\sqrt{5}\left( 5{{b}^{3}}+3{{a}^{2}}b \right)=38+17\sqrt{5}...........\left( 4 \right)\]

Comparing rational and irrational parts on both the sides of the equation, we get,

\[{{a}^{3}}+15a{{b}^{2}}=38...........\left( 5 \right)\]

\[5{{b}^{3}}+3{{a}^{2}}b=17..........\left( 6 \right)\]

Form equation $\left( 5 \right)$, we have,

\[\begin{align}

& 15a{{b}^{2}}=38-{{a}^{3}} \\

& \Rightarrow {{b}^{2}}=\dfrac{38-{{a}^{3}}}{15a}.............\left( 7 \right) \\

\end{align}\]

Form equation $\left( 6 \right)$, we have,

\[b\left( 5{{b}^{2}}+3{{a}^{2}} \right)=17\]

Substituting \[{{b}^{2}}=\dfrac{38-{{a}^{3}}}{15a}\] in the above equation, we have,

\[\begin{align}

& b\left( 5.\dfrac{38-{{a}^{3}}}{15a}+3{{a}^{2}} \right)=17 \\

& \Rightarrow b\left( \dfrac{38-{{a}^{3}}}{3a}+3{{a}^{2}} \right)=17 \\

& \Rightarrow b\left( \dfrac{38-{{a}^{3}}+9{{a}^{3}}}{3a} \right)=17 \\

& \Rightarrow b\left( \dfrac{38+8{{a}^{3}}}{3a} \right)=17 \\

& \Rightarrow b=\dfrac{51a}{38+8{{a}^{3}}} \\

\end{align}\]

Substituting $b$ from the above equation in equation $\left( 7 \right)$, we get,

$\begin{align}

& {{\left( \dfrac{51a}{38+8{{a}^{3}}} \right)}^{2}}=\dfrac{38-{{a}^{3}}}{15a} \\

& \Rightarrow {{51}^{2}}.15{{a}^{3}}=\left( 38-{{a}^{3}} \right){{\left( 38+8{{a}^{3}} \right)}^{2}} \\

\end{align}$

Let us substitute ${{a}^{3}}=x$ in the above equation.

$\Rightarrow {{51}^{2}}.15x=\left( 38-x \right){{\left( 38+8x \right)}^{2}}$

Since the above equation in variable $x$ is an equation of degree $3$, we can solve it only by hit and trial method. This means we have to randomly consider different integral values for $x$ and then we have to check which integral value of $x$ is satisfying this equation.

By hit and trial method, we get $x=8$. Since $x={{a}^{3}}$, we can say that ${{a}^{3}}=8$. Hence, $a=2$.

Substituting $a=2$ in equation $\left( 7 \right)$, we get,

\[\begin{align}

& {{b}^{2}}=\dfrac{38-{{2}^{3}}}{15.2} \\

& \Rightarrow {{b}^{2}}=\dfrac{38-8}{30} \\

& \Rightarrow {{b}^{2}}=\dfrac{30}{30} \\

& \Rightarrow {{b}^{2}}=1 \\

& \Rightarrow b=1,b=-1 \\

\end{align}\]

For $b=-1$, $a+b\sqrt{5}$ will become negative which is not possible since $a+b\sqrt{5}$ is a cube root of a positive number.

Hence, $b=1$.

So, we get $a=2,b=1$.

Hence the cube root of $38+17\sqrt{5}$ is equal to $2+\sqrt{5}$.

Note: There is an alternative method to solve this question. We can write $38+17\sqrt{5}$ as

$8+5\sqrt{5}+12\sqrt{5}+30$ which can be again written as ${{2}^{3}}+{{\left( \sqrt{5} \right)}^{3}}+3{{\left( 2 \right)}^{2}}\left( \sqrt{5} \right)+3\left( 2 \right){{\left( \sqrt{5} \right)}^{2}}$. If we notice this expression carefully, we will find that it is an expansion of ${{\left( 2+\sqrt{5} \right)}^{3}}$. Hence, we get $38+17\sqrt{5}={{\left( 2+\sqrt{5} \right)}^{3}}$. This means that $\left( 2+\sqrt{5} \right)$ is the cube root of $38+17\sqrt{5}$.

Before proceeding with the question, we must know that for an irrational number, the irrational part i.e. the number inside the square root is the same for the number and it’s cube root.

In the question, we are asked to find the cube root of an irrational number which is $38+17\sqrt{5}$. Since the irrational part i.e. the number inside the square root is the same for the number and it’s cube root, we can assume the cube root of $38+17\sqrt{5}$ as $a+b\sqrt{5}$.

As $a+b\sqrt{5}$ is the cube root of $38+17\sqrt{5}$, we can say that the cube of $a+b\sqrt{5}$ is equal to $38+17\sqrt{5}$. Hence, we can write,

\[{{\left( a+b\sqrt{5} \right)}^{3}}=38+17\sqrt{5}............\left( 1 \right)\]

Also, we have a formula which can be used to solve the above equation. The formula is,

${{\left( x+y \right)}^{3}}={{x}^{3}}+{{y}^{3}}+3{{x}^{2}}y+3x{{y}^{2}}................\left( 2 \right)$

From equation $\left( 1 \right)$, substituting $x=a$ and $y=b\sqrt{5}$ in equation $\left( 2 \right)$, we get.

\[\begin{align}

& {{\left( a+b\sqrt{5} \right)}^{3}}={{a}^{3}}+{{\left( b\sqrt{5} \right)}^{3}}+3{{a}^{2}}\left( b\sqrt{5} \right)+3a{{\left( b\sqrt{5} \right)}^{2}} \\

& \Rightarrow {{\left( a+b\sqrt{5} \right)}^{3}}={{a}^{3}}+5{{b}^{3}}\sqrt{5}+3{{a}^{2}}b\sqrt{5}+15a{{b}^{2}} \\

& \Rightarrow {{\left( a+b\sqrt{5} \right)}^{3}}={{a}^{3}}+15a{{b}^{2}}+5{{b}^{3}}\sqrt{5}+3{{a}^{2}}b\sqrt{5} \\

& \Rightarrow {{\left( a+b\sqrt{5} \right)}^{3}}={{a}^{3}}+15a{{b}^{2}}+\sqrt{5}\left( 5{{b}^{3}}+3{{a}^{2}}b \right)..........\left( 3 \right) \\

\end{align}\]

Substituting \[{{\left( a+b\sqrt{5} \right)}^{3}}={{a}^{3}}+15a{{b}^{2}}+\sqrt{5}\left( 5{{b}^{3}}+3{{a}^{2}}b \right)\] from equation $\left( 3 \right)$ in equation $\left( 1 \right)$, we get,

\[{{a}^{3}}+15a{{b}^{2}}+\sqrt{5}\left( 5{{b}^{3}}+3{{a}^{2}}b \right)=38+17\sqrt{5}...........\left( 4 \right)\]

Comparing rational and irrational parts on both the sides of the equation, we get,

\[{{a}^{3}}+15a{{b}^{2}}=38...........\left( 5 \right)\]

\[5{{b}^{3}}+3{{a}^{2}}b=17..........\left( 6 \right)\]

Form equation $\left( 5 \right)$, we have,

\[\begin{align}

& 15a{{b}^{2}}=38-{{a}^{3}} \\

& \Rightarrow {{b}^{2}}=\dfrac{38-{{a}^{3}}}{15a}.............\left( 7 \right) \\

\end{align}\]

Form equation $\left( 6 \right)$, we have,

\[b\left( 5{{b}^{2}}+3{{a}^{2}} \right)=17\]

Substituting \[{{b}^{2}}=\dfrac{38-{{a}^{3}}}{15a}\] in the above equation, we have,

\[\begin{align}

& b\left( 5.\dfrac{38-{{a}^{3}}}{15a}+3{{a}^{2}} \right)=17 \\

& \Rightarrow b\left( \dfrac{38-{{a}^{3}}}{3a}+3{{a}^{2}} \right)=17 \\

& \Rightarrow b\left( \dfrac{38-{{a}^{3}}+9{{a}^{3}}}{3a} \right)=17 \\

& \Rightarrow b\left( \dfrac{38+8{{a}^{3}}}{3a} \right)=17 \\

& \Rightarrow b=\dfrac{51a}{38+8{{a}^{3}}} \\

\end{align}\]

Substituting $b$ from the above equation in equation $\left( 7 \right)$, we get,

$\begin{align}

& {{\left( \dfrac{51a}{38+8{{a}^{3}}} \right)}^{2}}=\dfrac{38-{{a}^{3}}}{15a} \\

& \Rightarrow {{51}^{2}}.15{{a}^{3}}=\left( 38-{{a}^{3}} \right){{\left( 38+8{{a}^{3}} \right)}^{2}} \\

\end{align}$

Let us substitute ${{a}^{3}}=x$ in the above equation.

$\Rightarrow {{51}^{2}}.15x=\left( 38-x \right){{\left( 38+8x \right)}^{2}}$

Since the above equation in variable $x$ is an equation of degree $3$, we can solve it only by hit and trial method. This means we have to randomly consider different integral values for $x$ and then we have to check which integral value of $x$ is satisfying this equation.

By hit and trial method, we get $x=8$. Since $x={{a}^{3}}$, we can say that ${{a}^{3}}=8$. Hence, $a=2$.

Substituting $a=2$ in equation $\left( 7 \right)$, we get,

\[\begin{align}

& {{b}^{2}}=\dfrac{38-{{2}^{3}}}{15.2} \\

& \Rightarrow {{b}^{2}}=\dfrac{38-8}{30} \\

& \Rightarrow {{b}^{2}}=\dfrac{30}{30} \\

& \Rightarrow {{b}^{2}}=1 \\

& \Rightarrow b=1,b=-1 \\

\end{align}\]

For $b=-1$, $a+b\sqrt{5}$ will become negative which is not possible since $a+b\sqrt{5}$ is a cube root of a positive number.

Hence, $b=1$.

So, we get $a=2,b=1$.

Hence the cube root of $38+17\sqrt{5}$ is equal to $2+\sqrt{5}$.

Note: There is an alternative method to solve this question. We can write $38+17\sqrt{5}$ as

$8+5\sqrt{5}+12\sqrt{5}+30$ which can be again written as ${{2}^{3}}+{{\left( \sqrt{5} \right)}^{3}}+3{{\left( 2 \right)}^{2}}\left( \sqrt{5} \right)+3\left( 2 \right){{\left( \sqrt{5} \right)}^{2}}$. If we notice this expression carefully, we will find that it is an expansion of ${{\left( 2+\sqrt{5} \right)}^{3}}$. Hence, we get $38+17\sqrt{5}={{\left( 2+\sqrt{5} \right)}^{3}}$. This means that $\left( 2+\sqrt{5} \right)$ is the cube root of $38+17\sqrt{5}$.

Recently Updated Pages

If abc are pthqth and rth terms of a GP then left fraccb class 11 maths JEE_Main

If the pthqth and rth term of a GP are abc respectively class 11 maths JEE_Main

If abcdare any four consecutive coefficients of any class 11 maths JEE_Main

If A1A2 are the two AMs between two numbers a and b class 11 maths JEE_Main

If pthqthrth and sth terms of an AP be in GP then p class 11 maths JEE_Main

One root of the equation cos x x + frac12 0 lies in class 11 maths JEE_Main

Trending doubts

What was the capital of Kanishka A Mathura B Purushapura class 7 social studies CBSE

Difference Between Plant Cell and Animal Cell

Write an application to the principal requesting five class 10 english CBSE

Ray optics is valid when characteristic dimensions class 12 physics CBSE

Give 10 examples for herbs , shrubs , climbers , creepers

Tropic of Cancer passes through how many states? Name them.

Write the 6 fundamental rights of India and explain in detail

Write a letter to the principal requesting him to grant class 10 english CBSE

Name the Largest and the Smallest Cell in the Human Body ?