
Find the cosine and sine angle between the vectors and .
Answer
476.1k+ views
2 likes
Hint: Here, we will use the formula of the dot product of two vectors. Then substituting the given vectors in the formula, we will be able to find the cosine angle between the given vectors. We will then substitute the cosine angle in the formula depicting the relationship between cosine and sine to find both the required angles between the given two vectors.
Formula Used:
We will use the following formulas:
1.
2.
Complete step-by-step answer:
Given vectors are:
Now, by dot product formula, we know that,
This can also be written as:
Now, substituting the vectors, we get,
Solving this further, we get,
Therefore, the cosine angle between the given vectors is
Now, we know that:
Hence,
Substituting the value of , we get,
Therefore,
Hence, the cosine and sine angle between the vectors and are and respectively.
Thus, this is the required answer.
Note: A scalar is a quantity that has a magnitude whereas; a vector is a mathematical quantity that has both magnitude and direction. A line of a given length and pointing along a given direction, such as an arrow, is a typical representation of a vector. Also, for further knowledge, position vector is also known as location vector, it is a straight line having one end fixed and the other end attached to a moving point, it is used to describe the position of a certain point, which turns out to be its respective coordinates.
Formula Used:
We will use the following formulas:
1.
2.
Complete step-by-step answer:
Given vectors are:
Now, by dot product formula, we know that,
This can also be written as:
Now, substituting the vectors, we get,
Solving this further, we get,
Therefore, the cosine angle between the given vectors is
Now, we know that:
Hence,
Substituting the value of
Therefore,
Hence, the cosine and sine angle between the vectors
Thus, this is the required answer.
Note: A scalar is a quantity that has a magnitude whereas; a vector is a mathematical quantity that has both magnitude and direction. A line of a given length and pointing along a given direction, such as an arrow, is a typical representation of a vector. Also, for further knowledge, position vector is also known as location vector, it is a straight line having one end fixed and the other end attached to a moving point, it is used to describe the position of a certain point, which turns out to be its respective coordinates.
Recently Updated Pages
Master Class 11 Accountancy: Engaging Questions & Answers for Success

Master Class 11 Social Science: Engaging Questions & Answers for Success

Master Class 11 Economics: Engaging Questions & Answers for Success

Master Class 11 Physics: Engaging Questions & Answers for Success

Master Class 11 Biology: Engaging Questions & Answers for Success

Class 11 Question and Answer - Your Ultimate Solutions Guide

Trending doubts
1 ton equals to A 100 kg B 1000 kg C 10 kg D 10000 class 11 physics CBSE

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

How much is 23 kg in pounds class 11 chemistry CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells

Which one is a true fish A Jellyfish B Starfish C Dogfish class 11 biology CBSE

What is the technique used to separate the components class 11 chemistry CBSE
