
Find the condition of collinearity of the points $\left( a\cos {{\phi }_{1}},b\sin {{\phi }_{1}} \right),\left( a\cos {{\phi }_{2}},b\sin {{\phi }_{2}} \right),\left( a\cos {{\phi }_{3}},b\sin {{\phi }_{3}} \right)$ \[\]
Answer
554.1k+ views
Hint: We denote the three points as $A\left( a\cos {{\phi }_{1}},b\sin {{\phi }_{1}} \right),B\left( a\cos {{\phi }_{2}},b\sin {{\phi }_{2}} \right)$ and $C\left( a\cos {{\phi }_{3}},b\sin {{\phi }_{3}} \right)$. We denote the slopes of AB, BC, CA as ${{m}_{1}},{{m}_{2}},{{m}_{3}}$. We use the fact that three points will lie on a line when the all the slopes of lines joining any two point on the main line will be equal, We solve ${{m}_{1}}={{m}_{2}}={{m}_{3}}$ to get the condition of collinearity. \[\]
Complete step by step answer:
Let us denote the three points as $A\left( a\cos {{\phi }_{1}},b\sin {{\phi }_{1}} \right),B\left( a\cos {{\phi }_{2}},b\sin {{\phi }_{2}} \right)$ and $C\left( a\cos {{\phi }_{3}},b\sin {{\phi }_{3}} \right)$. If they are collinear then the three points $A,B,C$ will lie in the same line which means the slope of the line which contains $A,B,C$ will be equal to the slope of $AB,BC,AC$.\[\]
We know that the slope of line joining two points $\left( {{x}_{1}},{{y}_{1}} \right),\left( {{x}_{2}},{{y}_{2}} \right)$is given by
\[m=\dfrac{{{y}_{2}}-{{y}_{1}}}{{{x}_{2}}-{{x}_{1}}}\]
Let us denote the slope of AB as ${{m}_{1}}$, slope of BC as ${{m}_{2}}$and slope of CA ${{m}_{3}}$. We have,
\[{{m}_{1}}=\dfrac{b\left( \sin {{\phi }_{2}}-\sin {{\phi }_{1}} \right)}{a\left( \cos {{\phi }_{2}}-\cos {{\phi }_{1}} \right)}=\dfrac{b\cos \left( \dfrac{{{\phi }_{1}}+{{\phi }_{2}}}{2} \right)\sin \left( \dfrac{{{\phi }_{1}}-{{\phi }_{2}}}{2} \right)}{-a\sin \left( \dfrac{{{\phi }_{1}}+{{\phi }_{2}}}{2} \right)\sin \left( \dfrac{{{\phi }_{1}}-{{\phi }_{2}}}{2} \right)}=\dfrac{-b}{a}\cot \left( \dfrac{{{\phi }_{1}}+{{\phi }_{2}}}{2} \right)\]
We can similarly find the slopes of BC and CA as
\[\begin{align}
& {{m}_{2}}=\dfrac{b\left( \sin {{\phi }_{2}}-\sin {{\phi }_{3}} \right)}{a\left( \cos {{\phi }_{2}}-\cos {{\phi }_{3}} \right)}=\dfrac{b\cos \left( \dfrac{{{\phi }_{2}}+{{\phi }_{3}}}{2} \right)\sin \left( \dfrac{{{\phi }_{2}}-{{\phi }_{3}}}{2} \right)}{-a\sin \left( \dfrac{{{\phi }_{2}}+{{\phi }_{3}}}{2} \right)\sin \left( \dfrac{{{\phi }_{2}}-{{\phi }_{3}}}{2} \right)}=\dfrac{-b}{a}\cot \left( \dfrac{{{\phi }_{2}}+{{\phi }_{3}}}{2} \right) \\
& {{m}_{3}}=\dfrac{b\left( \sin {{\phi }_{1}}-\sin {{\phi }_{3}} \right)}{a\left( \cos {{\phi }_{1}}-\cos {{\phi }_{3}} \right)}=\dfrac{b\cos \left( \dfrac{{{\phi }_{1}}+{{\phi }_{3}}}{2} \right)\sin \left( \dfrac{{{\phi }_{1}}-{{\phi }_{3}}}{2} \right)}{-a\sin \left( \dfrac{{{\phi }_{1}}+{{\phi }_{3}}}{2} \right)\sin \left( \dfrac{{{\phi }_{1}}-{{\phi }_{3}}}{2} \right)}=\dfrac{-b}{a}\cot \left( \dfrac{{{\phi }_{1}}+{{\phi }_{3}}}{2} \right) \\
\end{align}\]
We have equality of slopes from the condition of collinearity which is ${{m}_{1}}={{m}_{2}}={{m}_{3}}$. We take ${{m}_{1}}={{m}_{2}}$ and use the relation between tangent and cotangent of an angle to have ,
\[\begin{align}
& \dfrac{-b}{a}\cot \left( \dfrac{{{\phi }_{1}}+{{\phi }_{2}}}{2} \right)=\dfrac{-b}{a}\cot \left( \dfrac{{{\phi }_{2}}+{{\phi }_{3}}}{2} \right) \\
& \Rightarrow \tan \left( \dfrac{{{\phi }_{1}}+{{\phi }_{2}}}{2} \right)=\tan \left( \dfrac{{{\phi }_{2}}+{{\phi }_{3}}}{2} \right)\left( \tan \theta =\dfrac{1}{\cot \theta } \right) \\
& \Rightarrow {{\phi }_{1}}+{{\phi }_{2}}={{\phi }_{2}}+{{\phi }_{3}} \\
& \Rightarrow {{\phi }_{1}}={{\phi }_{3}} \\
\end{align}\]
We can similarly take ${{m}_{2}}={{m}_{3}}$ to have
\[\begin{align}
& \dfrac{-b}{a}\cot \left( \dfrac{{{\phi }_{2}}+{{\phi }_{3}}}{2} \right)=\dfrac{-b}{a}\cot \left( \dfrac{{{\phi }_{1}}+{{\phi }_{3}}}{2} \right) \\
& \Rightarrow \tan \left( \dfrac{{{\phi }_{2}}+{{\phi }_{3}}}{2} \right)=\tan \left( \dfrac{{{\phi }_{1}}+{{\phi }_{3}}}{2} \right)\left( \tan \theta =\dfrac{1}{\cot \theta } \right) \\
& \Rightarrow {{\phi }_{2}}+{{\phi }_{3}}={{\phi }_{1}}+{{\phi }_{3}} \\
& \Rightarrow {{\phi }_{2}}={{\phi }_{1}} \\
\end{align}\]
So the condition of collinearity is ${{\phi }_{1}}={{\phi }_{2}}={{\phi }_{3}}$. If we take ${{\phi }_{1}}={{\phi }_{2}}={{\phi }_{3}}=\phi $ the coordinates will be $A\left( a\cos \phi ,b\sin \phi \right),B\left( a\cos \phi ,b\sin \phi \right),C \left( a\cos \phi ,b\sin \phi \right)$.So they are identical.\[\]
Note: We note that all the solutions of the equation $\tan x=\tan a$ are $x=n\pi +a$ where $n$ is an integer, we have rejected the rest of the solution to find the required condition. We note that the given points are in the form of $\left( a\cos t,b\sin t \right)$ with $t$ as a parameter is general coordinate of a point lying on an ellipse whose semi-major axis has length $a$ and semi-minor axis has length $b$ . We can alternatively find the co-linearity condition by equating the area of a triangle with three points $\left( {{x}_{1}},{{y}_{2}} \right),\left( {{x}_{2}},{{y}_{2}} \right),\left( {{x}_{3}},{{y}_{3}} \right)$ to zero which means $A=\dfrac{1}{2}\left( {{x}_{1}}\left( {{y}_{2}}-{{y}_{3}} \right)+{{x}_{2}}\left( {{y}_{3}}-{{y}_{1}} \right)+{{x}_{3}}\left( {{y}_{1}}-{{y}_{2}} \right) \right)=0$
Complete step by step answer:
Let us denote the three points as $A\left( a\cos {{\phi }_{1}},b\sin {{\phi }_{1}} \right),B\left( a\cos {{\phi }_{2}},b\sin {{\phi }_{2}} \right)$ and $C\left( a\cos {{\phi }_{3}},b\sin {{\phi }_{3}} \right)$. If they are collinear then the three points $A,B,C$ will lie in the same line which means the slope of the line which contains $A,B,C$ will be equal to the slope of $AB,BC,AC$.\[\]
We know that the slope of line joining two points $\left( {{x}_{1}},{{y}_{1}} \right),\left( {{x}_{2}},{{y}_{2}} \right)$is given by
\[m=\dfrac{{{y}_{2}}-{{y}_{1}}}{{{x}_{2}}-{{x}_{1}}}\]
Let us denote the slope of AB as ${{m}_{1}}$, slope of BC as ${{m}_{2}}$and slope of CA ${{m}_{3}}$. We have,
\[{{m}_{1}}=\dfrac{b\left( \sin {{\phi }_{2}}-\sin {{\phi }_{1}} \right)}{a\left( \cos {{\phi }_{2}}-\cos {{\phi }_{1}} \right)}=\dfrac{b\cos \left( \dfrac{{{\phi }_{1}}+{{\phi }_{2}}}{2} \right)\sin \left( \dfrac{{{\phi }_{1}}-{{\phi }_{2}}}{2} \right)}{-a\sin \left( \dfrac{{{\phi }_{1}}+{{\phi }_{2}}}{2} \right)\sin \left( \dfrac{{{\phi }_{1}}-{{\phi }_{2}}}{2} \right)}=\dfrac{-b}{a}\cot \left( \dfrac{{{\phi }_{1}}+{{\phi }_{2}}}{2} \right)\]
We can similarly find the slopes of BC and CA as
\[\begin{align}
& {{m}_{2}}=\dfrac{b\left( \sin {{\phi }_{2}}-\sin {{\phi }_{3}} \right)}{a\left( \cos {{\phi }_{2}}-\cos {{\phi }_{3}} \right)}=\dfrac{b\cos \left( \dfrac{{{\phi }_{2}}+{{\phi }_{3}}}{2} \right)\sin \left( \dfrac{{{\phi }_{2}}-{{\phi }_{3}}}{2} \right)}{-a\sin \left( \dfrac{{{\phi }_{2}}+{{\phi }_{3}}}{2} \right)\sin \left( \dfrac{{{\phi }_{2}}-{{\phi }_{3}}}{2} \right)}=\dfrac{-b}{a}\cot \left( \dfrac{{{\phi }_{2}}+{{\phi }_{3}}}{2} \right) \\
& {{m}_{3}}=\dfrac{b\left( \sin {{\phi }_{1}}-\sin {{\phi }_{3}} \right)}{a\left( \cos {{\phi }_{1}}-\cos {{\phi }_{3}} \right)}=\dfrac{b\cos \left( \dfrac{{{\phi }_{1}}+{{\phi }_{3}}}{2} \right)\sin \left( \dfrac{{{\phi }_{1}}-{{\phi }_{3}}}{2} \right)}{-a\sin \left( \dfrac{{{\phi }_{1}}+{{\phi }_{3}}}{2} \right)\sin \left( \dfrac{{{\phi }_{1}}-{{\phi }_{3}}}{2} \right)}=\dfrac{-b}{a}\cot \left( \dfrac{{{\phi }_{1}}+{{\phi }_{3}}}{2} \right) \\
\end{align}\]
We have equality of slopes from the condition of collinearity which is ${{m}_{1}}={{m}_{2}}={{m}_{3}}$. We take ${{m}_{1}}={{m}_{2}}$ and use the relation between tangent and cotangent of an angle to have ,
\[\begin{align}
& \dfrac{-b}{a}\cot \left( \dfrac{{{\phi }_{1}}+{{\phi }_{2}}}{2} \right)=\dfrac{-b}{a}\cot \left( \dfrac{{{\phi }_{2}}+{{\phi }_{3}}}{2} \right) \\
& \Rightarrow \tan \left( \dfrac{{{\phi }_{1}}+{{\phi }_{2}}}{2} \right)=\tan \left( \dfrac{{{\phi }_{2}}+{{\phi }_{3}}}{2} \right)\left( \tan \theta =\dfrac{1}{\cot \theta } \right) \\
& \Rightarrow {{\phi }_{1}}+{{\phi }_{2}}={{\phi }_{2}}+{{\phi }_{3}} \\
& \Rightarrow {{\phi }_{1}}={{\phi }_{3}} \\
\end{align}\]
We can similarly take ${{m}_{2}}={{m}_{3}}$ to have
\[\begin{align}
& \dfrac{-b}{a}\cot \left( \dfrac{{{\phi }_{2}}+{{\phi }_{3}}}{2} \right)=\dfrac{-b}{a}\cot \left( \dfrac{{{\phi }_{1}}+{{\phi }_{3}}}{2} \right) \\
& \Rightarrow \tan \left( \dfrac{{{\phi }_{2}}+{{\phi }_{3}}}{2} \right)=\tan \left( \dfrac{{{\phi }_{1}}+{{\phi }_{3}}}{2} \right)\left( \tan \theta =\dfrac{1}{\cot \theta } \right) \\
& \Rightarrow {{\phi }_{2}}+{{\phi }_{3}}={{\phi }_{1}}+{{\phi }_{3}} \\
& \Rightarrow {{\phi }_{2}}={{\phi }_{1}} \\
\end{align}\]
So the condition of collinearity is ${{\phi }_{1}}={{\phi }_{2}}={{\phi }_{3}}$. If we take ${{\phi }_{1}}={{\phi }_{2}}={{\phi }_{3}}=\phi $ the coordinates will be $A\left( a\cos \phi ,b\sin \phi \right),B\left( a\cos \phi ,b\sin \phi \right),C \left( a\cos \phi ,b\sin \phi \right)$.So they are identical.\[\]
Note: We note that all the solutions of the equation $\tan x=\tan a$ are $x=n\pi +a$ where $n$ is an integer, we have rejected the rest of the solution to find the required condition. We note that the given points are in the form of $\left( a\cos t,b\sin t \right)$ with $t$ as a parameter is general coordinate of a point lying on an ellipse whose semi-major axis has length $a$ and semi-minor axis has length $b$ . We can alternatively find the co-linearity condition by equating the area of a triangle with three points $\left( {{x}_{1}},{{y}_{2}} \right),\left( {{x}_{2}},{{y}_{2}} \right),\left( {{x}_{3}},{{y}_{3}} \right)$ to zero which means $A=\dfrac{1}{2}\left( {{x}_{1}}\left( {{y}_{2}}-{{y}_{3}} \right)+{{x}_{2}}\left( {{y}_{3}}-{{y}_{1}} \right)+{{x}_{3}}\left( {{y}_{1}}-{{y}_{2}} \right) \right)=0$
Recently Updated Pages
Master Class 12 Business Studies: Engaging Questions & Answers for Success

Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 English: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 12 Social Science: Engaging Questions & Answers for Success

Master Class 12 Chemistry: Engaging Questions & Answers for Success

Trending doubts
What is meant by exothermic and endothermic reactions class 11 chemistry CBSE

Which animal has three hearts class 11 biology CBSE

10 examples of friction in our daily life

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

1 Quintal is equal to a 110 kg b 10 kg c 100kg d 1000 class 11 physics CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells

