
Find the coefficient of ${{x}^{50}}$ in the expression ${{\left( 1+x \right)}^{1000}}+2x{{\left( 1+x \right)}^{999}}+3{{x}^{2}}{{\left( 1+x \right)}^{998}}+......+1001{{x}^{1000}}$?
Answer
555.6k+ views
Hint: We start solving the problem by assigning a variable to the given sum. We then multiply this variable with ‘x’ and divide it with $\left( 1+x \right)$. We then subtract the obtained result from the given sum in the problem. We can then see that the obtained result has a sum resembling a sum of terms of geometric progression. We then use the fact that the sum of the terms in Geometric progression a, $ar$, $a{{r}^{2}}$,……,$a{{r}^{n-1}}$ (n terms) as $\dfrac{a\left( 1-{{r}^{n}} \right)}{1-r}\left( \left| r \right|<1 \right)$. We then check expansions in the obtained result in which we can get the term ${{x}^{50}}$. We then use the fact that the coefficient of ${{x}^{r}}$ in the expansion of ${{\left( 1+x \right)}^{n}}\left( n\ge r \right)$ is ${}^{n}{{C}_{r}}$ to get the required result.
Complete step-by-step answer:
According to the problem, we are asked to find the coefficient of ${{x}^{50}}$ in the expression ${{\left( 1+x \right)}^{1000}}+2x{{\left( 1+x \right)}^{999}}+3{{x}^{2}}{{\left( 1+x \right)}^{998}}+......+1001{{x}^{1000}}$.
Let us assume $S={{\left( 1+x \right)}^{1000}}+2x{{\left( 1+x \right)}^{999}}+3{{x}^{2}}{{\left( 1+x \right)}^{998}}+...+1000{{x}^{999}}\left( 1+x \right)+1001{{x}^{1000}}$ ---(1).
Let us multiply both sides of equation (1) with ‘x’.
$xS=x{{\left( 1+x \right)}^{1000}}+2{{x}^{2}}{{\left( 1+x \right)}^{999}}+3{{x}^{3}}{{\left( 1+x \right)}^{998}}+...+1000{{x}^{1000}}\left( 1+x \right)+1001{{x}^{1001}}$ ---(2).
Let us divide both sides of equation (2) with $\left( 1+x \right)$.
\[\dfrac{xS}{1+x}=x{{\left( 1+x \right)}^{999}}+2{{x}^{2}}{{\left( 1+x \right)}^{998}}+3{{x}^{3}}{{\left( 1+x \right)}^{997}}+...+1000{{x}^{1000}}+\dfrac{1001{{x}^{1001}}}{1+x}\] ---(3).
Let us subtract equation (3) from equation (1).
So, we get $\Rightarrow S-\dfrac{xS}{1+x}={{\left( 1+x \right)}^{1000}}+x{{\left( 1+x \right)}^{999}}+{{x}^{2}}{{\left( 1+x \right)}^{998}}+{{x}^{3}}{{\left( 1+x \right)}^{997}}+......+{{x}^{1000}}-\dfrac{1001{{x}^{1001}}}{1+x}$.
$\Rightarrow \left( \dfrac{1+x-x}{1+x} \right)S=\dfrac{{{\left( 1+x \right)}^{1001}}+x{{\left( 1+x \right)}^{1000}}+{{x}^{2}}{{\left( 1+x \right)}^{999}}+{{x}^{3}}{{\left( 1+x \right)}^{998}}+......+{{x}^{1000}}\left( 1+x \right)-1001{{x}^{1001}}}{1+x}$.
$\Rightarrow \dfrac{S}{1+x}=\dfrac{{{\left( 1+x \right)}^{1001}}+x{{\left( 1+x \right)}^{1000}}+{{x}^{2}}{{\left( 1+x \right)}^{999}}+{{x}^{3}}{{\left( 1+x \right)}^{998}}+......+{{x}^{1000}}\left( 1+x \right)-1001{{x}^{1001}}}{1+x}$.
$\Rightarrow S={{\left( 1+x \right)}^{1001}}+x{{\left( 1+x \right)}^{1000}}+{{x}^{2}}{{\left( 1+x \right)}^{999}}+{{x}^{3}}{{\left( 1+x \right)}^{998}}+......+{{x}^{1000}}\left( 1+x \right)-1001{{x}^{1001}}$ ---(4).
Let us assume ${{S}_{1}}={{\left( 1+x \right)}^{1001}}+x{{\left( 1+x \right)}^{1000}}+{{x}^{2}}{{\left( 1+x \right)}^{999}}+{{x}^{3}}{{\left( 1+x \right)}^{998}}+......+{{x}^{1000}}\left( 1+x \right)$.
$\Rightarrow {{S}_{1}}={{\left( 1+x \right)}^{1001}}\left( 1+\dfrac{x}{1+x}+{{\left( \dfrac{x}{1+x} \right)}^{2}}+{{\left( \dfrac{x}{1+x} \right)}^{3}}+......+{{\left( \dfrac{x}{1+x} \right)}^{1000}} \right)$. We can see that this sum resembles Geometric progression with first term 1, and the common ratio $\dfrac{x}{1+x}$.
We know that the sum of the terms in Geometric progression a, $ar$, $a{{r}^{2}}$,……,$a{{r}^{n-1}}$ (n terms) is defined as $\dfrac{a\left( 1-{{r}^{n}} \right)}{1-r}\left( \left| r \right|<1 \right)$.
So, we get ${{S}_{1}}={{\left( 1+x \right)}^{1001}}\left( \dfrac{1\left( 1-{{\left( \dfrac{x}{1+x} \right)}^{1001}} \right)}{1-\left( \dfrac{x}{1+x} \right)} \right)$.
$\Rightarrow {{S}_{1}}={{\left( 1+x \right)}^{1001}}\left( \dfrac{1-\dfrac{{{x}^{1001}}}{{{\left( 1+x \right)}^{1001}}}}{\left( \dfrac{1+x-x}{1+x} \right)} \right)$.
$\Rightarrow {{S}_{1}}={{\left( 1+x \right)}^{1001}}\left( \dfrac{\dfrac{{{\left( 1+x \right)}^{1001}}-{{x}^{1001}}}{{{\left( 1+x \right)}^{1001}}}}{\left( \dfrac{1}{1+x} \right)} \right)$.
$\Rightarrow {{S}_{1}}={{\left( 1+x \right)}^{1001}}\left( \dfrac{{{\left( 1+x \right)}^{1001}}-{{x}^{1001}}}{{{\left( 1+x \right)}^{1000}}} \right)$.
$\Rightarrow {{S}_{1}}={{\left( 1+x \right)}^{1}}\left( {{\left( 1+x \right)}^{1001}}-{{x}^{1001}} \right)$.
$\Rightarrow {{S}_{1}}={{\left( 1+x \right)}^{1002}}-{{x}^{1001}}\left( 1+x \right)$ ---(5).
Let us substitute equation (5) in equation (1).
So, we get $S={{\left( 1+x \right)}^{1002}}-{{x}^{1001}}\left( 1+x \right)-1001{{x}^{1001}}$.
$\Rightarrow S={{\left( 1+x \right)}^{1002}}-{{x}^{1001}}-{{x}^{1002}}-1001{{x}^{1001}}$.
$\Rightarrow S={{\left( 1+x \right)}^{1002}}-1002{{x}^{1001}}-{{x}^{1002}}$ ---(6).
From equation (6), we can see that only the expansion ${{\left( 1+x \right)}^{1002}}$ has the term ${{x}^{50}}$.
We know that the coefficient of ${{x}^{r}}$ in the expansion of ${{\left( 1+x \right)}^{n}}\left( n\ge r \right)$ is ${}^{n}{{C}_{r}}$.
So, the co-efficient of the term ${{x}^{50}}$ in the expansion ${{\left( 1+x \right)}^{1002}}$ is ${}^{1002}{{C}_{50}}$.
∴ The coefficient of ${{x}^{50}}$ in the expression ${{\left( 1+x \right)}^{1000}}+2x{{\left( 1+x \right)}^{999}}+3{{x}^{2}}{{\left( 1+x \right)}^{998}}+......+1001{{x}^{1000}}$ is ${}^{1002}{{C}_{50}}$.
Note: We can see that the given problems contain a huge amount of calculation so, we need to perform each step carefully in order to avoid confusion and calculation mistakes. We can see that the given expression ${{\left( 1+x \right)}^{1000}}+2x{{\left( 1+x \right)}^{999}}+3{{x}^{2}}{{\left( 1+x \right)}^{998}}+......+1001{{x}^{1000}}$ resembles the arithmetic geometric progression with common difference 1 and common ratio $\dfrac{x}{1+x}$. So, we can use the sum of ‘n’ terms of arithmetic geometric progression is $\dfrac{a}{1-r}+\dfrac{dr\left( 1-{{r}^{n-1}} \right)}{{{\left( 1-r \right)}^{2}}}-\dfrac{\left[ a+\left( n-1 \right)d \right]{{r}^{n}}}{1-r}$ to find the sum which may involve heavy calculations. Here we have assumed that $x>0$ to apply the sum of ‘n’ terms in Geometric series.
Complete step-by-step answer:
According to the problem, we are asked to find the coefficient of ${{x}^{50}}$ in the expression ${{\left( 1+x \right)}^{1000}}+2x{{\left( 1+x \right)}^{999}}+3{{x}^{2}}{{\left( 1+x \right)}^{998}}+......+1001{{x}^{1000}}$.
Let us assume $S={{\left( 1+x \right)}^{1000}}+2x{{\left( 1+x \right)}^{999}}+3{{x}^{2}}{{\left( 1+x \right)}^{998}}+...+1000{{x}^{999}}\left( 1+x \right)+1001{{x}^{1000}}$ ---(1).
Let us multiply both sides of equation (1) with ‘x’.
$xS=x{{\left( 1+x \right)}^{1000}}+2{{x}^{2}}{{\left( 1+x \right)}^{999}}+3{{x}^{3}}{{\left( 1+x \right)}^{998}}+...+1000{{x}^{1000}}\left( 1+x \right)+1001{{x}^{1001}}$ ---(2).
Let us divide both sides of equation (2) with $\left( 1+x \right)$.
\[\dfrac{xS}{1+x}=x{{\left( 1+x \right)}^{999}}+2{{x}^{2}}{{\left( 1+x \right)}^{998}}+3{{x}^{3}}{{\left( 1+x \right)}^{997}}+...+1000{{x}^{1000}}+\dfrac{1001{{x}^{1001}}}{1+x}\] ---(3).
Let us subtract equation (3) from equation (1).
So, we get $\Rightarrow S-\dfrac{xS}{1+x}={{\left( 1+x \right)}^{1000}}+x{{\left( 1+x \right)}^{999}}+{{x}^{2}}{{\left( 1+x \right)}^{998}}+{{x}^{3}}{{\left( 1+x \right)}^{997}}+......+{{x}^{1000}}-\dfrac{1001{{x}^{1001}}}{1+x}$.
$\Rightarrow \left( \dfrac{1+x-x}{1+x} \right)S=\dfrac{{{\left( 1+x \right)}^{1001}}+x{{\left( 1+x \right)}^{1000}}+{{x}^{2}}{{\left( 1+x \right)}^{999}}+{{x}^{3}}{{\left( 1+x \right)}^{998}}+......+{{x}^{1000}}\left( 1+x \right)-1001{{x}^{1001}}}{1+x}$.
$\Rightarrow \dfrac{S}{1+x}=\dfrac{{{\left( 1+x \right)}^{1001}}+x{{\left( 1+x \right)}^{1000}}+{{x}^{2}}{{\left( 1+x \right)}^{999}}+{{x}^{3}}{{\left( 1+x \right)}^{998}}+......+{{x}^{1000}}\left( 1+x \right)-1001{{x}^{1001}}}{1+x}$.
$\Rightarrow S={{\left( 1+x \right)}^{1001}}+x{{\left( 1+x \right)}^{1000}}+{{x}^{2}}{{\left( 1+x \right)}^{999}}+{{x}^{3}}{{\left( 1+x \right)}^{998}}+......+{{x}^{1000}}\left( 1+x \right)-1001{{x}^{1001}}$ ---(4).
Let us assume ${{S}_{1}}={{\left( 1+x \right)}^{1001}}+x{{\left( 1+x \right)}^{1000}}+{{x}^{2}}{{\left( 1+x \right)}^{999}}+{{x}^{3}}{{\left( 1+x \right)}^{998}}+......+{{x}^{1000}}\left( 1+x \right)$.
$\Rightarrow {{S}_{1}}={{\left( 1+x \right)}^{1001}}\left( 1+\dfrac{x}{1+x}+{{\left( \dfrac{x}{1+x} \right)}^{2}}+{{\left( \dfrac{x}{1+x} \right)}^{3}}+......+{{\left( \dfrac{x}{1+x} \right)}^{1000}} \right)$. We can see that this sum resembles Geometric progression with first term 1, and the common ratio $\dfrac{x}{1+x}$.
We know that the sum of the terms in Geometric progression a, $ar$, $a{{r}^{2}}$,……,$a{{r}^{n-1}}$ (n terms) is defined as $\dfrac{a\left( 1-{{r}^{n}} \right)}{1-r}\left( \left| r \right|<1 \right)$.
So, we get ${{S}_{1}}={{\left( 1+x \right)}^{1001}}\left( \dfrac{1\left( 1-{{\left( \dfrac{x}{1+x} \right)}^{1001}} \right)}{1-\left( \dfrac{x}{1+x} \right)} \right)$.
$\Rightarrow {{S}_{1}}={{\left( 1+x \right)}^{1001}}\left( \dfrac{1-\dfrac{{{x}^{1001}}}{{{\left( 1+x \right)}^{1001}}}}{\left( \dfrac{1+x-x}{1+x} \right)} \right)$.
$\Rightarrow {{S}_{1}}={{\left( 1+x \right)}^{1001}}\left( \dfrac{\dfrac{{{\left( 1+x \right)}^{1001}}-{{x}^{1001}}}{{{\left( 1+x \right)}^{1001}}}}{\left( \dfrac{1}{1+x} \right)} \right)$.
$\Rightarrow {{S}_{1}}={{\left( 1+x \right)}^{1001}}\left( \dfrac{{{\left( 1+x \right)}^{1001}}-{{x}^{1001}}}{{{\left( 1+x \right)}^{1000}}} \right)$.
$\Rightarrow {{S}_{1}}={{\left( 1+x \right)}^{1}}\left( {{\left( 1+x \right)}^{1001}}-{{x}^{1001}} \right)$.
$\Rightarrow {{S}_{1}}={{\left( 1+x \right)}^{1002}}-{{x}^{1001}}\left( 1+x \right)$ ---(5).
Let us substitute equation (5) in equation (1).
So, we get $S={{\left( 1+x \right)}^{1002}}-{{x}^{1001}}\left( 1+x \right)-1001{{x}^{1001}}$.
$\Rightarrow S={{\left( 1+x \right)}^{1002}}-{{x}^{1001}}-{{x}^{1002}}-1001{{x}^{1001}}$.
$\Rightarrow S={{\left( 1+x \right)}^{1002}}-1002{{x}^{1001}}-{{x}^{1002}}$ ---(6).
From equation (6), we can see that only the expansion ${{\left( 1+x \right)}^{1002}}$ has the term ${{x}^{50}}$.
We know that the coefficient of ${{x}^{r}}$ in the expansion of ${{\left( 1+x \right)}^{n}}\left( n\ge r \right)$ is ${}^{n}{{C}_{r}}$.
So, the co-efficient of the term ${{x}^{50}}$ in the expansion ${{\left( 1+x \right)}^{1002}}$ is ${}^{1002}{{C}_{50}}$.
∴ The coefficient of ${{x}^{50}}$ in the expression ${{\left( 1+x \right)}^{1000}}+2x{{\left( 1+x \right)}^{999}}+3{{x}^{2}}{{\left( 1+x \right)}^{998}}+......+1001{{x}^{1000}}$ is ${}^{1002}{{C}_{50}}$.
Note: We can see that the given problems contain a huge amount of calculation so, we need to perform each step carefully in order to avoid confusion and calculation mistakes. We can see that the given expression ${{\left( 1+x \right)}^{1000}}+2x{{\left( 1+x \right)}^{999}}+3{{x}^{2}}{{\left( 1+x \right)}^{998}}+......+1001{{x}^{1000}}$ resembles the arithmetic geometric progression with common difference 1 and common ratio $\dfrac{x}{1+x}$. So, we can use the sum of ‘n’ terms of arithmetic geometric progression is $\dfrac{a}{1-r}+\dfrac{dr\left( 1-{{r}^{n-1}} \right)}{{{\left( 1-r \right)}^{2}}}-\dfrac{\left[ a+\left( n-1 \right)d \right]{{r}^{n}}}{1-r}$ to find the sum which may involve heavy calculations. Here we have assumed that $x>0$ to apply the sum of ‘n’ terms in Geometric series.
Recently Updated Pages
Master Class 12 Business Studies: Engaging Questions & Answers for Success

Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 English: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 12 Social Science: Engaging Questions & Answers for Success

Master Class 12 Chemistry: Engaging Questions & Answers for Success

Trending doubts
What is meant by exothermic and endothermic reactions class 11 chemistry CBSE

Which animal has three hearts class 11 biology CBSE

10 examples of friction in our daily life

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

1 Quintal is equal to a 110 kg b 10 kg c 100kg d 1000 class 11 physics CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells

