
Find the centre, eccentricity, foci and directrix of the hyperbola \[{{x}^{2}}-3{{y}^{2}}-2x=8\].
Answer
512.1k+ views
Hint: To find the centre, eccentricity etc. convert the given form of the hyperbola into standard form.
Formula used:
For the hyperbola
\[\dfrac{{{\left( x-h \right)}^{2}}}{{{a}^{2}}}-\dfrac{{{\left( y-k \right)}^{2}}}{{{b}^{2}}}=1\]
The centre is \[\left( h,\text{ }k \right)\].
Eccentricity is \[\dfrac{\sqrt{{{a}^{2}}+{{b}^{2}}}}{a}\]
Foci is \[\left( h\pm ae,\text{ }k \right)\] and
The directrice is \[x-h=\pm \dfrac{ae}{e}\].
Complete step by step answer:
First transform the given equation into standard from.
\[\begin{align}
& {{x}^{2}}-3{{y}^{2}}-2x=8 \\
& {{x}^{2}}-2x+1-3{{y}^{2}}-1=8 \\
& \left( {{x}^{2}}-2x+1 \right)-3{{y}^{2}}=8+1 \\
& {{\left( x-1 \right)}^{2}}-3{{y}^{2}}=9 \\
& \dfrac{{{\left( x-1 \right)}^{2}}}{9}-\dfrac{3{{y}^{2}}}{9}=\dfrac{9}{9} \\
& \dfrac{{{\left( x-1 \right)}^{2}}}{9}-\dfrac{{{y}^{2}}}{3}=1 \\
\end{align}\]
Here,
\[h=1\], \[k=0\], \[a=3\] and \[b=\sqrt{3}\].
Therefore,
Centre of the hyperbola is
\[\left( h,\text{ }k \right)=\left( 1,\text{ }0 \right)\]
The eccentricity is
\[\begin{align}
& e=\dfrac{\sqrt{9+3}}{3} \\
& e=\dfrac{\sqrt{12}}{3} \\
& e=\dfrac{2\sqrt{3}}{3} \\
& e=\dfrac{2}{\sqrt{3}} \\
\end{align}\]
Foci are
\[\left( 1\pm 2\sqrt{3},\text{ 0} \right)\]
And the directrices are
\[\begin{align}
& x-1=\pm \dfrac{3}{\dfrac{2}{\sqrt{3}}} \\
& x-1=\pm \dfrac{3\sqrt{3}}{2} \\
& x=1\pm \dfrac{3\sqrt{3}}{2} \\
\end{align}\]
Note: To calculate the various parameters of the hyperbola always check if the centre of the hyperbola is changed from the origin.
Formula used:
For the hyperbola
\[\dfrac{{{\left( x-h \right)}^{2}}}{{{a}^{2}}}-\dfrac{{{\left( y-k \right)}^{2}}}{{{b}^{2}}}=1\]
The centre is \[\left( h,\text{ }k \right)\].
Eccentricity is \[\dfrac{\sqrt{{{a}^{2}}+{{b}^{2}}}}{a}\]
Foci is \[\left( h\pm ae,\text{ }k \right)\] and
The directrice is \[x-h=\pm \dfrac{ae}{e}\].
Complete step by step answer:
First transform the given equation into standard from.
\[\begin{align}
& {{x}^{2}}-3{{y}^{2}}-2x=8 \\
& {{x}^{2}}-2x+1-3{{y}^{2}}-1=8 \\
& \left( {{x}^{2}}-2x+1 \right)-3{{y}^{2}}=8+1 \\
& {{\left( x-1 \right)}^{2}}-3{{y}^{2}}=9 \\
& \dfrac{{{\left( x-1 \right)}^{2}}}{9}-\dfrac{3{{y}^{2}}}{9}=\dfrac{9}{9} \\
& \dfrac{{{\left( x-1 \right)}^{2}}}{9}-\dfrac{{{y}^{2}}}{3}=1 \\
\end{align}\]
Here,
\[h=1\], \[k=0\], \[a=3\] and \[b=\sqrt{3}\].
Therefore,
Centre of the hyperbola is
\[\left( h,\text{ }k \right)=\left( 1,\text{ }0 \right)\]
The eccentricity is
\[\begin{align}
& e=\dfrac{\sqrt{9+3}}{3} \\
& e=\dfrac{\sqrt{12}}{3} \\
& e=\dfrac{2\sqrt{3}}{3} \\
& e=\dfrac{2}{\sqrt{3}} \\
\end{align}\]
Foci are
\[\left( 1\pm 2\sqrt{3},\text{ 0} \right)\]
And the directrices are
\[\begin{align}
& x-1=\pm \dfrac{3}{\dfrac{2}{\sqrt{3}}} \\
& x-1=\pm \dfrac{3\sqrt{3}}{2} \\
& x=1\pm \dfrac{3\sqrt{3}}{2} \\
\end{align}\]
Note: To calculate the various parameters of the hyperbola always check if the centre of the hyperbola is changed from the origin.
Recently Updated Pages
Master Class 11 Physics: Engaging Questions & Answers for Success

Master Class 11 Chemistry: Engaging Questions & Answers for Success

Master Class 11 Biology: Engaging Questions & Answers for Success

Class 11 Question and Answer - Your Ultimate Solutions Guide

Master Class 11 Business Studies: Engaging Questions & Answers for Success

Master Class 11 Computer Science: Engaging Questions & Answers for Success

Trending doubts
Explain why it is said like that Mock drill is use class 11 social science CBSE

Which of the following blood vessels in the circulatory class 11 biology CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells

1 ton equals to A 100 kg B 1000 kg C 10 kg D 10000 class 11 physics CBSE

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

Which one is a true fish A Jellyfish B Starfish C Dogfish class 11 biology CBSE
