
Find the area of the triangle whose vertices are:
$(i) (2,3), ( - 1,0), (2, - 4)$
$(ii) ( -5, -1), (3, -5), (5,2)$
Answer
508.5k+ views
Hint: Basically, the area of triangle is defined as the total region that is enclosed by the three sides of any particular triangle.
To solve such types of questions we need to remember the formula for the area of the triangle.
Area of triangle =$\dfrac{1}{2}\left[ {{X_1}({Y_2} - {Y_3}) + {X_2}({Y_3} - {Y_1}) + {X_3}({Y_1} - {Y_2})} \right]$
By putting the values of vertices in the above formula, we will get the area of the triangle.
Complete step-by-step answer:
(i). As mentioned in the question, we have to find its area of the triangle whose coordinates of the vertices of the triangle $A$$(2,3),$ $B$$( - 1,0)$ & $C(2, - 4)$
Area of triangle $ABC$
Formula for Area of triangle $ABC$=$\dfrac{1}{2}\left[ {{X_1}({Y_2} - {Y_3}) + {X_2}({Y_3} - {Y_1}) + {X_3}({Y_1} - {Y_2})} \right]$
Here,
${X_1} = 2,{Y_1} = 3$
${X_2} = - 1,{Y_2} = 0$
${X_3} = 2,{Y_3} = - 4$
Putting the values in the above formula
We can get the area of the triangle as
∴Area for the triangle $ABC$=$\dfrac{1}{2}\left[ {2(0 - ( - 4)) + ( - 1)( - 4 - 3) + 2(3 - 0)} \right]$
On adding the brackets terms, we get
=$\dfrac{1}{2}\left[ {2(4) + ( - 1)( - 7) + 2(3)} \right]$
Multiplying the terms we get,
=$\dfrac{1}{2}\left[ {8 + 7 + 6} \right]$
On some simplification we get,
=$\dfrac{1}{2}\left[ {21} \right]$
Dividing the terms, we get
=$10.5$ square unit
Hence we required the area of the triangle.
(ii). It is given that the vertices of triangle be $P( - 5, - 1),Q(3, - 5),R(5,2)$
Area of triangle $PQR$
Area of the triangle $ = \dfrac{1}{2}\left[ {{X_1}({Y_2} - {Y_3}) + {X_2}({Y_3} - {Y_1}) + {X_3}({Y_1} - {Y_2})} \right]$
Here,
${X_1} = - 5,{Y_1} = - 1$
${X_2} = 3,{Y_2} = - 5$
${X_3} = 5,{Y_3} = 2$
Putting the values in the above formula
Area for the triangle PQR=$\dfrac{1}{2}\left[ {(( - 5)( - 5 - 2) + 3(2 - ( - 1) + 5( - 1 - ( - 5))} \right]$
On adding the brackets terms and negative sign, we get
$ = \dfrac{1}{2}\left[ { - 5( - 7) + 3(2 + 1) + 5( - 1 + 5)} \right]$
$ = \dfrac{1}{2}\left[ { - 5( - 7) + 3(3) + 5(4)} \right]$
Multiplying the terms we get,
$ = \dfrac{1}{2}\left[ {35 + 9 + 20} \right]$
On some simplification we get,
$ = \dfrac{1}{2}\left[ {64} \right]$
Dividing the terms, we get
$ = 32$ Sq. unit
Note: Here the possibility of mistake in the formula to find the area of triangle written as: if they do not know about the formula for calculation of the area of a triangle whose vertices are given
The formula that we can use to find the area of a triangle instead of with vertices as above mentioned. Area of triangle = $\dfrac{1}{2}\left[ {{x_1}({y_2} - {y_3}) + {x_2}({y_3} - {y_1}) + {x_3}({y_1} - {y_2})} \right]$
The coordinates of each vertex noted properly. One must also watch out for any calculation mistake while using the formula as well as simplification steps involved.
To solve such types of questions we need to remember the formula for the area of the triangle.
Area of triangle =$\dfrac{1}{2}\left[ {{X_1}({Y_2} - {Y_3}) + {X_2}({Y_3} - {Y_1}) + {X_3}({Y_1} - {Y_2})} \right]$
By putting the values of vertices in the above formula, we will get the area of the triangle.
Complete step-by-step answer:
(i). As mentioned in the question, we have to find its area of the triangle whose coordinates of the vertices of the triangle $A$$(2,3),$ $B$$( - 1,0)$ & $C(2, - 4)$

Area of triangle $ABC$
Formula for Area of triangle $ABC$=$\dfrac{1}{2}\left[ {{X_1}({Y_2} - {Y_3}) + {X_2}({Y_3} - {Y_1}) + {X_3}({Y_1} - {Y_2})} \right]$
Here,
${X_1} = 2,{Y_1} = 3$
${X_2} = - 1,{Y_2} = 0$
${X_3} = 2,{Y_3} = - 4$
Putting the values in the above formula
We can get the area of the triangle as
∴Area for the triangle $ABC$=$\dfrac{1}{2}\left[ {2(0 - ( - 4)) + ( - 1)( - 4 - 3) + 2(3 - 0)} \right]$
On adding the brackets terms, we get
=$\dfrac{1}{2}\left[ {2(4) + ( - 1)( - 7) + 2(3)} \right]$
Multiplying the terms we get,
=$\dfrac{1}{2}\left[ {8 + 7 + 6} \right]$
On some simplification we get,
=$\dfrac{1}{2}\left[ {21} \right]$
Dividing the terms, we get
=$10.5$ square unit
Hence we required the area of the triangle.
(ii). It is given that the vertices of triangle be $P( - 5, - 1),Q(3, - 5),R(5,2)$

Area of triangle $PQR$
Area of the triangle $ = \dfrac{1}{2}\left[ {{X_1}({Y_2} - {Y_3}) + {X_2}({Y_3} - {Y_1}) + {X_3}({Y_1} - {Y_2})} \right]$
Here,
${X_1} = - 5,{Y_1} = - 1$
${X_2} = 3,{Y_2} = - 5$
${X_3} = 5,{Y_3} = 2$
Putting the values in the above formula
Area for the triangle PQR=$\dfrac{1}{2}\left[ {(( - 5)( - 5 - 2) + 3(2 - ( - 1) + 5( - 1 - ( - 5))} \right]$
On adding the brackets terms and negative sign, we get
$ = \dfrac{1}{2}\left[ { - 5( - 7) + 3(2 + 1) + 5( - 1 + 5)} \right]$
$ = \dfrac{1}{2}\left[ { - 5( - 7) + 3(3) + 5(4)} \right]$
Multiplying the terms we get,
$ = \dfrac{1}{2}\left[ {35 + 9 + 20} \right]$
On some simplification we get,
$ = \dfrac{1}{2}\left[ {64} \right]$
Dividing the terms, we get
$ = 32$ Sq. unit
Note: Here the possibility of mistake in the formula to find the area of triangle written as: if they do not know about the formula for calculation of the area of a triangle whose vertices are given
The formula that we can use to find the area of a triangle instead of with vertices as above mentioned. Area of triangle = $\dfrac{1}{2}\left[ {{x_1}({y_2} - {y_3}) + {x_2}({y_3} - {y_1}) + {x_3}({y_1} - {y_2})} \right]$
The coordinates of each vertex noted properly. One must also watch out for any calculation mistake while using the formula as well as simplification steps involved.
Recently Updated Pages
Master Class 10 Computer Science: Engaging Questions & Answers for Success

Master Class 10 Maths: Engaging Questions & Answers for Success

Master Class 10 English: Engaging Questions & Answers for Success

Master Class 10 General Knowledge: Engaging Questions & Answers for Success

Master Class 10 Science: Engaging Questions & Answers for Success

Master Class 10 Social Science: Engaging Questions & Answers for Success

Trending doubts
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths

Which one is a true fish A Jellyfish B Starfish C Dogfish class 10 biology CBSE

Fill the blanks with proper collective nouns 1 A of class 10 english CBSE

Why is there a time difference of about 5 hours between class 10 social science CBSE

What is the median of the first 10 natural numbers class 10 maths CBSE

Change the following sentences into negative and interrogative class 10 english CBSE
