
Find the area of the shaded region.
Answer
588k+ views
Hint: To find the area of the shaded region in the given figure we will subtract the area of the circle having radius 1 cm and the two semi-circle having radius 2 cm from the bigger semi-circle of radius 4 cm. Then we will get the area of the shaded region.
Complete step-by-step answer:
We have been given the figure as follows:
From the given figure, we can say that the area of the shaded region is equal to the area obtained by subtracting the area of the circle with C as center and the two semi-circles with AM and MB as diameter from the bigger semi-circle having AB as diameter.
We know that area of a circle having D as diameter is as follows:
Area \[=\dfrac{\pi {{D}^{2}}}{4}\]
So, area of semi-circle \[=\dfrac{1}{2}\times \] area of circle
\[\begin{align}
& =\dfrac{1}{2}\times \dfrac{\pi {{D}^{2}}}{4} \\
& =\dfrac{\pi {{D}^{2}}}{8} \\
\end{align}\]
Now the area of semi-circle having AM = 4 cm as diameter \[=\dfrac{\pi {{D}^{2}}}{8}\]
\[=\dfrac{\pi \times {{\left( 4 \right)}^{2}}}{8}=\dfrac{\pi \times 16}{8}=2\pi c{{m}^{2}}\]
Area of semi-circle having MB = 4 cm as diameter \[=\dfrac{\pi {{D}^{2}}}{8}\]
\[=\dfrac{\pi \times 4}{8}=\dfrac{\pi \times 16}{8}=2\pi c{{m}^{2}}\]
Area of circle having C as center and diameter \[=\left( 2\times 1 \right)cm\] is \[=\dfrac{\pi {{D}^{2}}}{4}\]
\[=\dfrac{\pi \times {{\left( 2 \right)}^{2}}}{4}=\pi c{{m}^{2}}\]
Area of semicircle having AB = 8 cm as diameter \[=\dfrac{\pi {{D}^{2}}}{8}\]
\[=\dfrac{\pi \times {{8}^{2}}}{8}=\pi \times 8=8\pi c{{m}^{2}}\]
So the area of the shaded region = area of semi-circle having AB as diameter – (area of the circle having C as center + 2 area of semi-circle with AM as diameter)
\[=8\pi -\left( \pi +2\times 2\pi \right)=8\pi -5\pi =3\pi c{{m}^{2}}\]
Also, \[\pi =\dfrac{22}{7}\] so by substituting the value of \[\pi \] we get as follows:
Area of shaded region \[=3\pi =3\times \dfrac{22}{7}=9.43c{{m}^{2}}(approx)\]
Therefore, the area of the shaded region is \[9.43c{{m}^{2}}(approx)\].
Note: Be careful while calculating the area as we have been given the diameter of some circle and radius of a circle so accordingly use the formula to calculate the area.
Complete step-by-step answer:
We have been given the figure as follows:
From the given figure, we can say that the area of the shaded region is equal to the area obtained by subtracting the area of the circle with C as center and the two semi-circles with AM and MB as diameter from the bigger semi-circle having AB as diameter.
We know that area of a circle having D as diameter is as follows:
Area \[=\dfrac{\pi {{D}^{2}}}{4}\]
So, area of semi-circle \[=\dfrac{1}{2}\times \] area of circle
\[\begin{align}
& =\dfrac{1}{2}\times \dfrac{\pi {{D}^{2}}}{4} \\
& =\dfrac{\pi {{D}^{2}}}{8} \\
\end{align}\]
Now the area of semi-circle having AM = 4 cm as diameter \[=\dfrac{\pi {{D}^{2}}}{8}\]
\[=\dfrac{\pi \times {{\left( 4 \right)}^{2}}}{8}=\dfrac{\pi \times 16}{8}=2\pi c{{m}^{2}}\]
Area of semi-circle having MB = 4 cm as diameter \[=\dfrac{\pi {{D}^{2}}}{8}\]
\[=\dfrac{\pi \times 4}{8}=\dfrac{\pi \times 16}{8}=2\pi c{{m}^{2}}\]
Area of circle having C as center and diameter \[=\left( 2\times 1 \right)cm\] is \[=\dfrac{\pi {{D}^{2}}}{4}\]
\[=\dfrac{\pi \times {{\left( 2 \right)}^{2}}}{4}=\pi c{{m}^{2}}\]
Area of semicircle having AB = 8 cm as diameter \[=\dfrac{\pi {{D}^{2}}}{8}\]
\[=\dfrac{\pi \times {{8}^{2}}}{8}=\pi \times 8=8\pi c{{m}^{2}}\]
So the area of the shaded region = area of semi-circle having AB as diameter – (area of the circle having C as center + 2 area of semi-circle with AM as diameter)
\[=8\pi -\left( \pi +2\times 2\pi \right)=8\pi -5\pi =3\pi c{{m}^{2}}\]
Also, \[\pi =\dfrac{22}{7}\] so by substituting the value of \[\pi \] we get as follows:
Area of shaded region \[=3\pi =3\times \dfrac{22}{7}=9.43c{{m}^{2}}(approx)\]
Therefore, the area of the shaded region is \[9.43c{{m}^{2}}(approx)\].
Note: Be careful while calculating the area as we have been given the diameter of some circle and radius of a circle so accordingly use the formula to calculate the area.
Recently Updated Pages
Two men on either side of the cliff 90m height observe class 10 maths CBSE

What happens to glucose which enters nephron along class 10 biology CBSE

Cutting of the Chinese melon means A The business and class 10 social science CBSE

Write a dialogue with at least ten utterances between class 10 english CBSE

Show an aquatic food chain using the following organisms class 10 biology CBSE

A circle is inscribed in an equilateral triangle and class 10 maths CBSE

Trending doubts
Why is there a time difference of about 5 hours between class 10 social science CBSE

Write a letter to the principal requesting him to grant class 10 english CBSE

What is the median of the first 10 natural numbers class 10 maths CBSE

The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths

Which of the following does not have a fundamental class 10 physics CBSE

State and prove converse of BPT Basic Proportionality class 10 maths CBSE

