
Find the area of the region bounded by the curve $y={{x}^{2}}$ and the line y = 4.
Answer
600.6k+ views
Hint: The curve $y={{x}^{2}}$ is symmetrical to the y-axis and the line y = 4 restricts the region bounded by a parabola $y={{x}^{2}}$. So, we will first find the area of a region bounded by the y-axis, curve $y={{x}^{2}}$ in the first quadrant and the line y = 4, and then multiply it by 2 to get the required area.
Complete step-by-step answer:
It is given in the question that the region is bounded by the curve $y={{x}^{2}}$ and the line y = 4.
We have to find out the area bounded by the curve $y={{x}^{2}}$ and the line y = 4.
Let us assume that the line AB represents y = 4 in the diagram and curve AOB represent the curve $y={{x}^{2}}$ in the diagram.
Now, from the figure, we can see that we have to find the area of the region AOBA.
From the diagram, we can say that AOB is a parabola which is symmetrical about the y-axis.
So, area of region AODA = area of region BODB.
Also, we have to find the area bounded by the region AOBA.
So, area of the region (AOBA) = 2 x Area(BODB).
Also, area of region (BODB),
$=\int_{0}^{4}{xdy}..........\left( 1 \right)$
We have given that in the question,
$\begin{align}
& {{x}^{2}}=y \\
& \Rightarrow x=\pm \sqrt{y} \\
\end{align}$
As we are finding the area BODB which is lying in the first quadrant. So, we will consider only $x=+\sqrt{y}$ and neglect $x=-\sqrt{y}$ because the first quadrant has positive abscissa and positive ordinate.
So, putting the value of $x=+\sqrt{y}$ in equation (1), we get,
$\begin{align}
& =\int_{0}^{4}{\sqrt{y}}dy \\
& =\int_{0}^{4}{{{\left( y \right)}^{\dfrac{1}{2}}}.}\ dy...........\left( 2 \right) \\
\end{align}$
We know that from basic integration,
$\int_{0}^{a}{{{\left( y \right)}^{n}}.\ dy=\left[ \dfrac{{{y}^{n+1}}}{n+1} \right]_{0}^{a}}$
Applying basic integration on equation (2), we get,
$\begin{align}
& =\left[ \dfrac{{{y}^{\dfrac{1}{2}+1}}}{\dfrac{1}{2}+1} \right]_{0}^{4} \\
& =\left[ \dfrac{{{y}^{\dfrac{3}{2}}}}{\dfrac{3}{2}} \right]_{0}^{4} \\
\end{align}$
Now, putting the value of given limits, we get,
$\begin{align}
& =\left[ \dfrac{{{\left( 4 \right)}^{\dfrac{3}{2}}}}{\dfrac{3}{2}} \right]-\left[ \dfrac{{{0}^{\dfrac{3}{2}}}}{\dfrac{3}{2}} \right] \\
& =\left[ \dfrac{{{\left( {{\left( 2 \right)}^{2}} \right)}^{\dfrac{3}{2}}}}{\dfrac{3}{2}} \right]=0 \\
& =\dfrac{{{\left( 2 \right)}^{3}}}{\dfrac{3}{2}} \\
& =\dfrac{8}{\dfrac{3}{2}} \\
& =\dfrac{8\times 2}{3} \\
& =\dfrac{16}{3} \\
\end{align}$
So, the area bounded by the region $BODB=\dfrac{16}{3}$.
Also, the area bounded by the region (AOBA) = 2 x (area of BODB)
Now, putting the value of the area of region BODB, we get,
$\begin{align}
& =2\times \dfrac{16}{3} \\
& =\dfrac{32}{3} \\
\end{align}$
Thus, the area bounded by the region $AOBA=\dfrac{32}{3}$.
Note: The alternative method of this question will be:
Step 1: We will find the area bounded by the region BODB.
Step 2: We will find the area bounded by the region AODA.
Step 3: Adding the area of AODA and area of BODA to get the required area AOBA.
Complete step-by-step answer:
It is given in the question that the region is bounded by the curve $y={{x}^{2}}$ and the line y = 4.
We have to find out the area bounded by the curve $y={{x}^{2}}$ and the line y = 4.
Let us assume that the line AB represents y = 4 in the diagram and curve AOB represent the curve $y={{x}^{2}}$ in the diagram.
Now, from the figure, we can see that we have to find the area of the region AOBA.
From the diagram, we can say that AOB is a parabola which is symmetrical about the y-axis.
So, area of region AODA = area of region BODB.
Also, we have to find the area bounded by the region AOBA.
So, area of the region (AOBA) = 2 x Area(BODB).
Also, area of region (BODB),
$=\int_{0}^{4}{xdy}..........\left( 1 \right)$
We have given that in the question,
$\begin{align}
& {{x}^{2}}=y \\
& \Rightarrow x=\pm \sqrt{y} \\
\end{align}$
As we are finding the area BODB which is lying in the first quadrant. So, we will consider only $x=+\sqrt{y}$ and neglect $x=-\sqrt{y}$ because the first quadrant has positive abscissa and positive ordinate.
So, putting the value of $x=+\sqrt{y}$ in equation (1), we get,
$\begin{align}
& =\int_{0}^{4}{\sqrt{y}}dy \\
& =\int_{0}^{4}{{{\left( y \right)}^{\dfrac{1}{2}}}.}\ dy...........\left( 2 \right) \\
\end{align}$
We know that from basic integration,
$\int_{0}^{a}{{{\left( y \right)}^{n}}.\ dy=\left[ \dfrac{{{y}^{n+1}}}{n+1} \right]_{0}^{a}}$
Applying basic integration on equation (2), we get,
$\begin{align}
& =\left[ \dfrac{{{y}^{\dfrac{1}{2}+1}}}{\dfrac{1}{2}+1} \right]_{0}^{4} \\
& =\left[ \dfrac{{{y}^{\dfrac{3}{2}}}}{\dfrac{3}{2}} \right]_{0}^{4} \\
\end{align}$
Now, putting the value of given limits, we get,
$\begin{align}
& =\left[ \dfrac{{{\left( 4 \right)}^{\dfrac{3}{2}}}}{\dfrac{3}{2}} \right]-\left[ \dfrac{{{0}^{\dfrac{3}{2}}}}{\dfrac{3}{2}} \right] \\
& =\left[ \dfrac{{{\left( {{\left( 2 \right)}^{2}} \right)}^{\dfrac{3}{2}}}}{\dfrac{3}{2}} \right]=0 \\
& =\dfrac{{{\left( 2 \right)}^{3}}}{\dfrac{3}{2}} \\
& =\dfrac{8}{\dfrac{3}{2}} \\
& =\dfrac{8\times 2}{3} \\
& =\dfrac{16}{3} \\
\end{align}$
So, the area bounded by the region $BODB=\dfrac{16}{3}$.
Also, the area bounded by the region (AOBA) = 2 x (area of BODB)
Now, putting the value of the area of region BODB, we get,
$\begin{align}
& =2\times \dfrac{16}{3} \\
& =\dfrac{32}{3} \\
\end{align}$
Thus, the area bounded by the region $AOBA=\dfrac{32}{3}$.
Note: The alternative method of this question will be:
Step 1: We will find the area bounded by the region BODB.
Step 2: We will find the area bounded by the region AODA.
Step 3: Adding the area of AODA and area of BODA to get the required area AOBA.
Recently Updated Pages
Master Class 11 Social Science: Engaging Questions & Answers for Success

Master Class 11 Physics: Engaging Questions & Answers for Success

Master Class 11 Maths: Engaging Questions & Answers for Success

Master Class 11 Economics: Engaging Questions & Answers for Success

Master Class 11 Computer Science: Engaging Questions & Answers for Success

Master Class 11 Chemistry: Engaging Questions & Answers for Success

Trending doubts
What is meant by exothermic and endothermic reactions class 11 chemistry CBSE

10 examples of friction in our daily life

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells

1 Quintal is equal to a 110 kg b 10 kg c 100kg d 1000 class 11 physics CBSE

Draw a diagram of nephron and explain its structur class 11 biology CBSE

