
How do you find the antiderivative of $ \int{{{\sec }^{2}}x{{\csc }^{2}}xdx} $ ?
Answer
560.7k+ views
Hint: In the problem we have the trigonometric ratios $ \sec x $ and $ \csc x $ . For integration we will use the trigonometric identity which is $ {{\csc }^{2}}x-{{\cot }^{2}}x=1 $ from this identity we will substitute $ {{\csc }^{2}}x=1+{{\cot }^{2}}x $ in the given integration and simplify the equation by using distribution law of multiplication. Now we will convert the possible trigonometric ratios into simple trigonometric ratios like $ \sin x $ , $ \cos x $ . After doing all the steps then we will get that the given equation which is in the form of $ \int{uvdx} $ is converted into $ \int{\left( u+v \right)dx} $ . Now it is easier to apply the integration and using the proper integration formulas we will get the required result.
Complete step by step answer:
Given that, $ \int{{{\sec }^{2}}x{{\csc }^{2}}xdx} $ .
From the trigonometric identity $ {{\csc }^{2}}x-{{\cot }^{2}}x=1 $ , substituting $ {{\csc }^{2}}x=1+{{\cot }^{2}}x $ in the above equation, then we will get
$ \int{{{\sec }^{2}}x{{\csc }^{2}}xdx}=\int{{{\sec }^{2}}x\left( 1+{{\cot }^{2}}x \right)}dx $
Applying distribution law of multiplication, then we will get
$ \Rightarrow \int{{{\sec }^{2}}x{{\csc }^{2}}xdx}=\int{\left( {{\sec }^{2}}x+{{\sec }^{2}}x.{{\cot }^{2}}x \right)dx} $
We know that $ \sec x=\dfrac{1}{\cos x} $ , $ \cot x=\dfrac{\cos x}{\sin x} $ . From this value the above equation is modified as
$ \Rightarrow \int{{{\sec }^{2}}x{{\csc }^{2}}xdx}=\int{\left( {{\sec }^{2}}x+\dfrac{1}{{{\cos }^{2}}x}\times \dfrac{{{\cos }^{2}}x}{{{\sin }^{2}}x} \right)dx} $
Simplifying the above equation, then we will get
$ \Rightarrow \int{{{\sec }^{2}}x{{\csc }^{2}}xdx}=\int{\left( {{\sec }^{2}}x+\dfrac{1}{{{\sin }^{2}}x} \right)dx} $
Using the trigonometric formula $ \csc x=\dfrac{1}{\sin x} $ , then we will get
$ \Rightarrow \int{{{\sec }^{2}}x{{\csc }^{2}}x}dx=\int{\left( {{\sec }^{2}}x+{{\csc }^{2}}x \right)dx} $
Applying integration for each term individually, then we will get
$ \Rightarrow \int{{{\sec }^{2}}x{{\csc }^{2}}xdx}=\int{{{\sec }^{2}}x}dx+\int{{{\csc }^{2}}x}dx $
We know that $ \int{{{\sec }^{2}}xdx}=\tan x+C $ , $ \int{{{\csc }^{2}}xdx}=-\cot x+C $ , then we will get
$ \Rightarrow \int{{{\sec }^{2}}x{{\csc }^{2}}xdx}=\tan x-\cot x+C $.
Note:
We can also solve the above problem without using the trigonometric identity $ {{\csc }^{2}}x-{{\cot }^{2}}x=1 $ .
We know that $ \sec x=\dfrac{1}{\cos x} $ , $ \csc x=\dfrac{1}{\sin x} $ , then the given equation is modified as
$ \int{{{\sec }^{2}}x{{\csc }^{2}}x}dx=\int{\dfrac{1}{{{\cos }^{2}}x}.\dfrac{1}{{{\sin }^{2}}x}}dx $
We have the trigonometric identity $ {{\sin }^{2}}x+{{\cos }^{2}}x=1 $ , then we will get
$ \int{{{\sec }^{2}}x{{\csc }^{2}}xdx}=\int{\dfrac{{{\sin }^{2}}x+{{\cos }^{2}}x}{{{\sin }^{2}}x.{{\cos }^{2}}x}dx} $
Simplifying the above equation, then we will have
$ \begin{align}
& \Rightarrow \int{{{\sec }^{2}}x{{\csc }^{2}}xdx}=\int{\left( \dfrac{{{\sin }^{2}}x}{{{\sin }^{2}}x{{\cos }^{2}}x}+\dfrac{{{\cos }^{2}}x}{{{\sin }^{2}}x{{\cos }^{2}}x} \right)dx} \\
& \Rightarrow \int{{{\sec }^{2}}x{{\csc }^{2}}xdx}=\int{\left( \dfrac{1}{{{\cos }^{2}}x}+\dfrac{1}{{{\sin }^{2}}x} \right)dx} \\
& \Rightarrow \int{{{\sec }^{2}}x{{\csc }^{2}}xdx}=\int{\left( {{\sec }^{2}}x+{{\csc }^{2}}x \right)dx} \\
\end{align} $
Applying the integration to each term individually and using the know formulas we will get the result as
$ \Rightarrow \int{{{\sec }^{2}}x{{\csc }^{2}}xdx}=\tan x-\cot x+C $
From both the methods we got the same result.
Complete step by step answer:
Given that, $ \int{{{\sec }^{2}}x{{\csc }^{2}}xdx} $ .
From the trigonometric identity $ {{\csc }^{2}}x-{{\cot }^{2}}x=1 $ , substituting $ {{\csc }^{2}}x=1+{{\cot }^{2}}x $ in the above equation, then we will get
$ \int{{{\sec }^{2}}x{{\csc }^{2}}xdx}=\int{{{\sec }^{2}}x\left( 1+{{\cot }^{2}}x \right)}dx $
Applying distribution law of multiplication, then we will get
$ \Rightarrow \int{{{\sec }^{2}}x{{\csc }^{2}}xdx}=\int{\left( {{\sec }^{2}}x+{{\sec }^{2}}x.{{\cot }^{2}}x \right)dx} $
We know that $ \sec x=\dfrac{1}{\cos x} $ , $ \cot x=\dfrac{\cos x}{\sin x} $ . From this value the above equation is modified as
$ \Rightarrow \int{{{\sec }^{2}}x{{\csc }^{2}}xdx}=\int{\left( {{\sec }^{2}}x+\dfrac{1}{{{\cos }^{2}}x}\times \dfrac{{{\cos }^{2}}x}{{{\sin }^{2}}x} \right)dx} $
Simplifying the above equation, then we will get
$ \Rightarrow \int{{{\sec }^{2}}x{{\csc }^{2}}xdx}=\int{\left( {{\sec }^{2}}x+\dfrac{1}{{{\sin }^{2}}x} \right)dx} $
Using the trigonometric formula $ \csc x=\dfrac{1}{\sin x} $ , then we will get
$ \Rightarrow \int{{{\sec }^{2}}x{{\csc }^{2}}x}dx=\int{\left( {{\sec }^{2}}x+{{\csc }^{2}}x \right)dx} $
Applying integration for each term individually, then we will get
$ \Rightarrow \int{{{\sec }^{2}}x{{\csc }^{2}}xdx}=\int{{{\sec }^{2}}x}dx+\int{{{\csc }^{2}}x}dx $
We know that $ \int{{{\sec }^{2}}xdx}=\tan x+C $ , $ \int{{{\csc }^{2}}xdx}=-\cot x+C $ , then we will get
$ \Rightarrow \int{{{\sec }^{2}}x{{\csc }^{2}}xdx}=\tan x-\cot x+C $.
Note:
We can also solve the above problem without using the trigonometric identity $ {{\csc }^{2}}x-{{\cot }^{2}}x=1 $ .
We know that $ \sec x=\dfrac{1}{\cos x} $ , $ \csc x=\dfrac{1}{\sin x} $ , then the given equation is modified as
$ \int{{{\sec }^{2}}x{{\csc }^{2}}x}dx=\int{\dfrac{1}{{{\cos }^{2}}x}.\dfrac{1}{{{\sin }^{2}}x}}dx $
We have the trigonometric identity $ {{\sin }^{2}}x+{{\cos }^{2}}x=1 $ , then we will get
$ \int{{{\sec }^{2}}x{{\csc }^{2}}xdx}=\int{\dfrac{{{\sin }^{2}}x+{{\cos }^{2}}x}{{{\sin }^{2}}x.{{\cos }^{2}}x}dx} $
Simplifying the above equation, then we will have
$ \begin{align}
& \Rightarrow \int{{{\sec }^{2}}x{{\csc }^{2}}xdx}=\int{\left( \dfrac{{{\sin }^{2}}x}{{{\sin }^{2}}x{{\cos }^{2}}x}+\dfrac{{{\cos }^{2}}x}{{{\sin }^{2}}x{{\cos }^{2}}x} \right)dx} \\
& \Rightarrow \int{{{\sec }^{2}}x{{\csc }^{2}}xdx}=\int{\left( \dfrac{1}{{{\cos }^{2}}x}+\dfrac{1}{{{\sin }^{2}}x} \right)dx} \\
& \Rightarrow \int{{{\sec }^{2}}x{{\csc }^{2}}xdx}=\int{\left( {{\sec }^{2}}x+{{\csc }^{2}}x \right)dx} \\
\end{align} $
Applying the integration to each term individually and using the know formulas we will get the result as
$ \Rightarrow \int{{{\sec }^{2}}x{{\csc }^{2}}xdx}=\tan x-\cot x+C $
From both the methods we got the same result.
Recently Updated Pages
Master Class 10 Computer Science: Engaging Questions & Answers for Success

Master Class 10 General Knowledge: Engaging Questions & Answers for Success

Master Class 10 English: Engaging Questions & Answers for Success

Master Class 10 Social Science: Engaging Questions & Answers for Success

Master Class 10 Maths: Engaging Questions & Answers for Success

Master Class 10 Science: Engaging Questions & Answers for Success

Trending doubts
What is the median of the first 10 natural numbers class 10 maths CBSE

Which women's tennis player has 24 Grand Slam singles titles?

Who is the Brand Ambassador of Incredible India?

Why is there a time difference of about 5 hours between class 10 social science CBSE

Write a letter to the principal requesting him to grant class 10 english CBSE

State and prove converse of BPT Basic Proportionality class 10 maths CBSE

