Find the angle measure of 4 radians
[a] $114.591{}^\circ $
[b] $141.372{}^\circ $
[c] \[229.183{}^\circ \]
[d] $282.743{}^\circ $
[e] $458.366{}^\circ $
Answer
382.5k+ views
Hint: Use the fact that one complete rotation is equal to $2\pi $ radians and also equal to \[360{}^\circ \]. Use the unitary method to convert 4 radians in degrees.
Complete step-by-step answer:
The angle subtended by the arc of length 1 unit at the centre of a circle of radius 1 unit is said to be equal to 1 radian. Hence in this system, one complete angle is equal to $2\pi $ radians.
We know that $2\pi $ radians are equal to \[360{}^\circ \]
Hence 1 radian is equal to $\dfrac{360{}^\circ }{2\pi }=\dfrac{180{}^\circ }{\pi }$
Hence 4 radians are equal to $\dfrac{180{}^\circ }{\pi }\times 4=229.183{}^\circ $
Hence 4 radians are equal to \[229.183{}^\circ \]
Hence option [c] is correct.
Note: The conversion can also be understood as follows.
Equal angles are subtended by equal length arcs in congruent circles.
Let 4 radians = x degrees.
Arc subtending 4 radians in a circle of radius 1 unit has length $l=1\times 4=4$. Because in the radian system $\theta =\dfrac{l}{r}$ .
Arc subtending x degrees in a circle of radius 1 unit has length $l=\dfrac{x}{360}2\pi r=\dfrac{\pi x}{180}$. Because in degree system $\theta =\dfrac{l}{2\pi r}\times 360$
Since both the lengths need to be equal, we have
$\begin{align}
& \dfrac{\pi x}{180}=4 \\
& \Rightarrow x=\dfrac{4}{\pi }\times 180=229.183{}^\circ \\
\end{align}$
Complete step-by-step answer:
The angle subtended by the arc of length 1 unit at the centre of a circle of radius 1 unit is said to be equal to 1 radian. Hence in this system, one complete angle is equal to $2\pi $ radians.
We know that $2\pi $ radians are equal to \[360{}^\circ \]
Hence 1 radian is equal to $\dfrac{360{}^\circ }{2\pi }=\dfrac{180{}^\circ }{\pi }$
Hence 4 radians are equal to $\dfrac{180{}^\circ }{\pi }\times 4=229.183{}^\circ $
Hence 4 radians are equal to \[229.183{}^\circ \]
Hence option [c] is correct.
Note: The conversion can also be understood as follows.
Equal angles are subtended by equal length arcs in congruent circles.
Let 4 radians = x degrees.
Arc subtending 4 radians in a circle of radius 1 unit has length $l=1\times 4=4$. Because in the radian system $\theta =\dfrac{l}{r}$ .
Arc subtending x degrees in a circle of radius 1 unit has length $l=\dfrac{x}{360}2\pi r=\dfrac{\pi x}{180}$. Because in degree system $\theta =\dfrac{l}{2\pi r}\times 360$
Since both the lengths need to be equal, we have
$\begin{align}
& \dfrac{\pi x}{180}=4 \\
& \Rightarrow x=\dfrac{4}{\pi }\times 180=229.183{}^\circ \\
\end{align}$
Recently Updated Pages
Define absolute refractive index of a medium

Find out what do the algal bloom and redtides sign class 10 biology CBSE

Prove that the function fleft x right xn is continuous class 12 maths CBSE

Find the values of other five trigonometric functions class 10 maths CBSE

Find the values of other five trigonometric ratios class 10 maths CBSE

Find the values of other five trigonometric functions class 10 maths CBSE

Trending doubts
Which of the following Chief Justice of India has acted class 10 social science CBSE

Green glands are excretory organs of A Crustaceans class 11 biology CBSE

What if photosynthesis does not occur in plants class 11 biology CBSE

What is 1 divided by 0 class 8 maths CBSE

Fill the blanks with the suitable prepositions 1 The class 9 english CBSE

Difference Between Plant Cell and Animal Cell

10 slogans on organ donation class 8 english CBSE

Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE

What is the past tense of read class 10 english CBSE
