
Find the ${{6}^{th}}$ term from the end of the A.P. 17, 14, 11,………….., -40?
Answer
597k+ views
Hint:Try to figure out that the A.P. that you get when you write the above mentioned A.P. in reverse order. Once you figure it out, find the sixth term.
Complete step-by-step answer:
Before starting with the solution, let us discuss what an A.P. is. A.P. stands for arithmetic progression and is defined as a sequence of numbers for which the difference of two consecutive terms is constant. The general term of an arithmetic progression is denoted by ${{T}_{r}}$, and sum till n terms is denoted by ${{S}_{r}}$ .
${{T}_{r}}=a+\left( r-1 \right)d$
${{S}_{r}}=\dfrac{r}{2}\left( 2a+\left( r-1 \right)d \right)$
Now moving to the sequence that you get when you reverse the A.P. given in the question. We would get an A.P. again, which will have a common difference of 3 and the first term of the sequence will be -40. Therefore, the sequence is: -40, -37, -34……………..
From above series $a= -40$ , $d=-37-(-40)=3$
Using above formula the sixth term of the new A.P. is:
${{T}_{6}}=a+\left( 6-1 \right)d$
$\Rightarrow {{T}_{6}}=-40+\left( 6-1 \right)\times 3=-25$
Therefore, the ${{6}^{th}}$ term from the end of the A.P. 17, 14, 11,………….., -40 is -25.
Note: In a question related to an arithmetic progression, the most important thing is to find the common difference and the first term. You also need to learn the basic properties of all the standard sequences like the arithmetic progression and geometric progressions.For these types of questions try to make reverse order of given A.P and find the given term.
Complete step-by-step answer:
Before starting with the solution, let us discuss what an A.P. is. A.P. stands for arithmetic progression and is defined as a sequence of numbers for which the difference of two consecutive terms is constant. The general term of an arithmetic progression is denoted by ${{T}_{r}}$, and sum till n terms is denoted by ${{S}_{r}}$ .
${{T}_{r}}=a+\left( r-1 \right)d$
${{S}_{r}}=\dfrac{r}{2}\left( 2a+\left( r-1 \right)d \right)$
Now moving to the sequence that you get when you reverse the A.P. given in the question. We would get an A.P. again, which will have a common difference of 3 and the first term of the sequence will be -40. Therefore, the sequence is: -40, -37, -34……………..
From above series $a= -40$ , $d=-37-(-40)=3$
Using above formula the sixth term of the new A.P. is:
${{T}_{6}}=a+\left( 6-1 \right)d$
$\Rightarrow {{T}_{6}}=-40+\left( 6-1 \right)\times 3=-25$
Therefore, the ${{6}^{th}}$ term from the end of the A.P. 17, 14, 11,………….., -40 is -25.
Note: In a question related to an arithmetic progression, the most important thing is to find the common difference and the first term. You also need to learn the basic properties of all the standard sequences like the arithmetic progression and geometric progressions.For these types of questions try to make reverse order of given A.P and find the given term.
Recently Updated Pages
Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 12 Biology: Engaging Questions & Answers for Success

Master Class 12 Physics: Engaging Questions & Answers for Success

Master Class 8 Maths: Engaging Questions & Answers for Success

Class 8 Question and Answer - Your Ultimate Solutions Guide

Trending doubts
What is meant by exothermic and endothermic reactions class 11 chemistry CBSE

Which animal has three hearts class 11 biology CBSE

10 examples of friction in our daily life

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

1 Quintal is equal to a 110 kg b 10 kg c 100kg d 1000 class 11 physics CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells

