
Find the \[{10^{th}}\] term from the last term of the AP: \[8,10,12.....,126\]
Answer
578.7k+ views
Hint: Arithmetic Progression (AP) is a sequence of numbers in order in which the difference of any two consecutive numbers is a constant value. For example, the series of natural numbers: \[1,{\text{ }}2,{\text{ }}3,{\text{ }}4,{\text{ }}5,{\text{ }}6,\]is an AP, which has a common difference between two successive terms (say 1 and 2) equal to 1 (2 -1). Even in the case of odd numbers and even numbers, we can see the common difference between two successive terms will be equal to 2.
Definition 1: A mathematical sequence in which the difference between two consecutive terms is always a constant and it is abbreviated as AP.
Definition 2: An arithmetic sequence or progression is defined as a sequence of numbers in which for every pair of consecutive terms, the second number is obtained by adding a fixed number to the first one.
In arithmetic progression (A.P) series the first term is denoted by ‘\[a\]’ and the common difference is denoted by ‘\[d\]’ and ‘\[n\]’ is a number of terms. ‘\[{a_n}\]’ is last term. Here in the series given the value of ‘\[a\]’ is \[8\]and ‘\[d\]’ is\[2\].
Complete step by step answer:
\[8,10,12,....126\]
Here first term \[a\]=\[8\]
Common difference \[ = \]\[10 - 8 = 2\]
Last term (\[l\])\[ = 126\]
Number of terms\[ = 10\]
Now \[{n^{th}}\] term from end using formula
\[l - (n - 1)d\]
\[ = 126 - (10 - 1)2\]
\[ = 126 - 9 \times 2\]
\[ = 108\]
Note: We can also find \[{n^{th}}\] term from beginning by using formula \[{a_n} = a + (n - 1)d\] and also sum of \[n\] terms by using formula \[{S_n} = \dfrac{n}{2}(2a + (n - 1)d)\] or \[{S_n} = \dfrac{n}{2}(a + l)\] if last term is given.
Definition 1: A mathematical sequence in which the difference between two consecutive terms is always a constant and it is abbreviated as AP.
Definition 2: An arithmetic sequence or progression is defined as a sequence of numbers in which for every pair of consecutive terms, the second number is obtained by adding a fixed number to the first one.
In arithmetic progression (A.P) series the first term is denoted by ‘\[a\]’ and the common difference is denoted by ‘\[d\]’ and ‘\[n\]’ is a number of terms. ‘\[{a_n}\]’ is last term. Here in the series given the value of ‘\[a\]’ is \[8\]and ‘\[d\]’ is\[2\].
Complete step by step answer:
\[8,10,12,....126\]
Here first term \[a\]=\[8\]
Common difference \[ = \]\[10 - 8 = 2\]
Last term (\[l\])\[ = 126\]
Number of terms\[ = 10\]
Now \[{n^{th}}\] term from end using formula
\[l - (n - 1)d\]
\[ = 126 - (10 - 1)2\]
\[ = 126 - 9 \times 2\]
\[ = 108\]
Note: We can also find \[{n^{th}}\] term from beginning by using formula \[{a_n} = a + (n - 1)d\] and also sum of \[n\] terms by using formula \[{S_n} = \dfrac{n}{2}(2a + (n - 1)d)\] or \[{S_n} = \dfrac{n}{2}(a + l)\] if last term is given.
Recently Updated Pages
Two men on either side of the cliff 90m height observe class 10 maths CBSE

What happens to glucose which enters nephron along class 10 biology CBSE

Cutting of the Chinese melon means A The business and class 10 social science CBSE

Write a dialogue with at least ten utterances between class 10 english CBSE

Show an aquatic food chain using the following organisms class 10 biology CBSE

A circle is inscribed in an equilateral triangle and class 10 maths CBSE

Trending doubts
Why is there a time difference of about 5 hours between class 10 social science CBSE

Write a letter to the principal requesting him to grant class 10 english CBSE

What is the median of the first 10 natural numbers class 10 maths CBSE

The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths

Which of the following does not have a fundamental class 10 physics CBSE

State and prove converse of BPT Basic Proportionality class 10 maths CBSE

