
How do you find sine, cosine or tangent of $ {90^ \circ } $ or $ {180^ \circ } $ using the unit circle ?
Answer
535.5k+ views
Hint: In the given problem, we are required to find the sine, cosine or tangent of a given angle using some simple and basic trigonometric ideas and methods. Such questions require basic knowledge of compound angle formulae and their applications in this type of questions. Unit circle is a circle with a radius of one unit drawn on a graph paper with its centre at origin.
Complete step by step solution:
Consider a unit circle (a circle of radius of 1 unit centered at origin).
We need to find out the values of sine, cosine and tangent using the unit circle for angles $ {90^ \circ } $ or $ {180^ \circ } $ .
We know that \[\sin \theta = \dfrac{{{\text{Altitude}}}}{{{\text{Hypotenuse}}}}\] , \[\tan \theta = \dfrac{{{\text{Altitude}}}}{{{\text{Base}}}}\] and \[\cos \theta = \dfrac{{{\text{Base}}}}{{{\text{Hypotenuse}}}}\] .
Now, observing the figure, we can infer a lot of things and parameters.
For $ {90^ \circ } $ ,
Altitude $ = 1 $
Base $ = 0 $
Hypotenuse $ = 1 $
So, \[\sin {90^ \circ } = \dfrac{{{\text{Altitude}}}}{{{\text{Hypotenuse}}}} = 1\]
\[\cos {90^ \circ } = \dfrac{{{\text{Base}}}}{{{\text{Hypotenuse}}}} = 0\]
\[\tan {90^ \circ } = \dfrac{{{\text{Altitude}}}}{{{\text{Base}}}} = \dfrac{1}{0}{\text{ = Not defined}}\]
For $ {180^ \circ } $ ,
Altitude $ = 0 $
Base $ = 1 $
Hypotenuse $ = 1 $
So, \[\sin {90^ \circ } = \dfrac{{{\text{Altitude}}}}{{{\text{Hypotenuse}}}} = 0\]
\[\cos {90^ \circ } = \dfrac{{{\text{Base}}}}{{{\text{Hypotenuse}}}} = 1\]
\[\tan {90^ \circ } = \dfrac{{{\text{Altitude}}}}{{{\text{Base}}}} = 0\]
Hence, the values of sine, cosine and tangent for the angles $ {90^ \circ } $ or $ {180^ \circ } $ using the unit circle can be calculated as done above in the solution.
Note: The method discussed in the question to find the value of sine, cosine, tangent or any other trigonometric function is fundamental and basic. The answers for the values of sine, cosine and tangent ratios for the given values of angles can also be verified using the table of trigonometric value tables for special angles.
Complete step by step solution:
Consider a unit circle (a circle of radius of 1 unit centered at origin).
We need to find out the values of sine, cosine and tangent using the unit circle for angles $ {90^ \circ } $ or $ {180^ \circ } $ .
We know that \[\sin \theta = \dfrac{{{\text{Altitude}}}}{{{\text{Hypotenuse}}}}\] , \[\tan \theta = \dfrac{{{\text{Altitude}}}}{{{\text{Base}}}}\] and \[\cos \theta = \dfrac{{{\text{Base}}}}{{{\text{Hypotenuse}}}}\] .
Now, observing the figure, we can infer a lot of things and parameters.
For $ {90^ \circ } $ ,
Altitude $ = 1 $
Base $ = 0 $
Hypotenuse $ = 1 $
So, \[\sin {90^ \circ } = \dfrac{{{\text{Altitude}}}}{{{\text{Hypotenuse}}}} = 1\]
\[\cos {90^ \circ } = \dfrac{{{\text{Base}}}}{{{\text{Hypotenuse}}}} = 0\]
\[\tan {90^ \circ } = \dfrac{{{\text{Altitude}}}}{{{\text{Base}}}} = \dfrac{1}{0}{\text{ = Not defined}}\]
For $ {180^ \circ } $ ,
Altitude $ = 0 $
Base $ = 1 $
Hypotenuse $ = 1 $
So, \[\sin {90^ \circ } = \dfrac{{{\text{Altitude}}}}{{{\text{Hypotenuse}}}} = 0\]
\[\cos {90^ \circ } = \dfrac{{{\text{Base}}}}{{{\text{Hypotenuse}}}} = 1\]
\[\tan {90^ \circ } = \dfrac{{{\text{Altitude}}}}{{{\text{Base}}}} = 0\]
Hence, the values of sine, cosine and tangent for the angles $ {90^ \circ } $ or $ {180^ \circ } $ using the unit circle can be calculated as done above in the solution.
Note: The method discussed in the question to find the value of sine, cosine, tangent or any other trigonometric function is fundamental and basic. The answers for the values of sine, cosine and tangent ratios for the given values of angles can also be verified using the table of trigonometric value tables for special angles.
Recently Updated Pages
Master Class 11 Economics: Engaging Questions & Answers for Success

Master Class 11 English: Engaging Questions & Answers for Success

Master Class 11 Social Science: Engaging Questions & Answers for Success

Master Class 11 Biology: Engaging Questions & Answers for Success

Class 11 Question and Answer - Your Ultimate Solutions Guide

Master Class 11 Business Studies: Engaging Questions & Answers for Success

Trending doubts
What is meant by exothermic and endothermic reactions class 11 chemistry CBSE

10 examples of friction in our daily life

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells

What are Quantum numbers Explain the quantum number class 11 chemistry CBSE

1 Quintal is equal to a 110 kg b 10 kg c 100kg d 1000 class 11 physics CBSE

