
How do you find sine, cosine or tangent of $ {90^ \circ } $ or $ {180^ \circ } $ using the unit circle ?
Answer
451.8k+ views
Hint: In the given problem, we are required to find the sine, cosine or tangent of a given angle using some simple and basic trigonometric ideas and methods. Such questions require basic knowledge of compound angle formulae and their applications in this type of questions. Unit circle is a circle with a radius of one unit drawn on a graph paper with its centre at origin.
Complete step by step solution:
Consider a unit circle (a circle of radius of 1 unit centered at origin).
We need to find out the values of sine, cosine and tangent using the unit circle for angles $ {90^ \circ } $ or $ {180^ \circ } $ .
We know that \[\sin \theta = \dfrac{{{\text{Altitude}}}}{{{\text{Hypotenuse}}}}\] , \[\tan \theta = \dfrac{{{\text{Altitude}}}}{{{\text{Base}}}}\] and \[\cos \theta = \dfrac{{{\text{Base}}}}{{{\text{Hypotenuse}}}}\] .
Now, observing the figure, we can infer a lot of things and parameters.
For $ {90^ \circ } $ ,
Altitude $ = 1 $
Base $ = 0 $
Hypotenuse $ = 1 $
So, \[\sin {90^ \circ } = \dfrac{{{\text{Altitude}}}}{{{\text{Hypotenuse}}}} = 1\]
\[\cos {90^ \circ } = \dfrac{{{\text{Base}}}}{{{\text{Hypotenuse}}}} = 0\]
\[\tan {90^ \circ } = \dfrac{{{\text{Altitude}}}}{{{\text{Base}}}} = \dfrac{1}{0}{\text{ = Not defined}}\]
For $ {180^ \circ } $ ,
Altitude $ = 0 $
Base $ = 1 $
Hypotenuse $ = 1 $
So, \[\sin {90^ \circ } = \dfrac{{{\text{Altitude}}}}{{{\text{Hypotenuse}}}} = 0\]
\[\cos {90^ \circ } = \dfrac{{{\text{Base}}}}{{{\text{Hypotenuse}}}} = 1\]
\[\tan {90^ \circ } = \dfrac{{{\text{Altitude}}}}{{{\text{Base}}}} = 0\]
Hence, the values of sine, cosine and tangent for the angles $ {90^ \circ } $ or $ {180^ \circ } $ using the unit circle can be calculated as done above in the solution.
Note: The method discussed in the question to find the value of sine, cosine, tangent or any other trigonometric function is fundamental and basic. The answers for the values of sine, cosine and tangent ratios for the given values of angles can also be verified using the table of trigonometric value tables for special angles.
Complete step by step solution:
Consider a unit circle (a circle of radius of 1 unit centered at origin).
We need to find out the values of sine, cosine and tangent using the unit circle for angles $ {90^ \circ } $ or $ {180^ \circ } $ .
We know that \[\sin \theta = \dfrac{{{\text{Altitude}}}}{{{\text{Hypotenuse}}}}\] , \[\tan \theta = \dfrac{{{\text{Altitude}}}}{{{\text{Base}}}}\] and \[\cos \theta = \dfrac{{{\text{Base}}}}{{{\text{Hypotenuse}}}}\] .

Now, observing the figure, we can infer a lot of things and parameters.
For $ {90^ \circ } $ ,
Altitude $ = 1 $
Base $ = 0 $
Hypotenuse $ = 1 $
So, \[\sin {90^ \circ } = \dfrac{{{\text{Altitude}}}}{{{\text{Hypotenuse}}}} = 1\]
\[\cos {90^ \circ } = \dfrac{{{\text{Base}}}}{{{\text{Hypotenuse}}}} = 0\]
\[\tan {90^ \circ } = \dfrac{{{\text{Altitude}}}}{{{\text{Base}}}} = \dfrac{1}{0}{\text{ = Not defined}}\]
For $ {180^ \circ } $ ,
Altitude $ = 0 $
Base $ = 1 $
Hypotenuse $ = 1 $
So, \[\sin {90^ \circ } = \dfrac{{{\text{Altitude}}}}{{{\text{Hypotenuse}}}} = 0\]
\[\cos {90^ \circ } = \dfrac{{{\text{Base}}}}{{{\text{Hypotenuse}}}} = 1\]
\[\tan {90^ \circ } = \dfrac{{{\text{Altitude}}}}{{{\text{Base}}}} = 0\]
Hence, the values of sine, cosine and tangent for the angles $ {90^ \circ } $ or $ {180^ \circ } $ using the unit circle can be calculated as done above in the solution.
Note: The method discussed in the question to find the value of sine, cosine, tangent or any other trigonometric function is fundamental and basic. The answers for the values of sine, cosine and tangent ratios for the given values of angles can also be verified using the table of trigonometric value tables for special angles.
Recently Updated Pages
The correct geometry and hybridization for XeF4 are class 11 chemistry CBSE

Water softening by Clarks process uses ACalcium bicarbonate class 11 chemistry CBSE

With reference to graphite and diamond which of the class 11 chemistry CBSE

A certain household has consumed 250 units of energy class 11 physics CBSE

The lightest metal known is A beryllium B lithium C class 11 chemistry CBSE

What is the formula mass of the iodine molecule class 11 chemistry CBSE

Trending doubts
Is Cellular respiration an Oxidation or Reduction class 11 chemistry CBSE

In electron dot structure the valence shell electrons class 11 chemistry CBSE

What is the Pitti Island famous for ABird Sanctuary class 11 social science CBSE

State the laws of reflection of light

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells
