
How do you find rectangular coordinates for the point with polar coordinates $ \left( {4,\dfrac{{4\pi }}{3}} \right) $ ?
Answer
544.8k+ views
Hint: In order to find the rectangular coordinates $ \left( {x,y} \right) $ ,use the transformation
$
x = r\cos \theta \\
y = r\sin \theta \;
$
where r is equal to 4 and $ \theta $ is equal to $ \dfrac{{4\pi }}{3} $ to get the rectangular coordinates $ \left( {x,y} \right) $
Complete step-by-step answer:
There are two ways to determine a point on a plane, one is by the rectangular coordinates and another is by the Polar Coordinates.
Polar Coordinates $ (p,\theta ) $ is actually a 2D coordinate system in which every point on the plane is found by a distance $ p $ from a reference point and an angle i.e. $ \theta $ from a reference direction.
where $ p $ is the radial coordinate and $ \theta $ is known as the angular coordinate.
We are given a polar coordinate $ \left( {4,\dfrac{{4\pi }}{3}} \right) $
Radial coordinate = $ p\,/\,r = 4 $
Angular coordinate $ = \theta = \dfrac{{4\pi }}{3} $
Now to transformation by which we can find our rectangular coordinates $ \left( {x,y} \right) $ is
$
x = r\cos \theta \\
y = r\sin \theta \;
$
In our case $ r = 4\,and\,\theta = \dfrac{{4\pi }}{3} $
$
x = 4\cos \left( {\dfrac{{4\pi }}{3}} \right) \\
= 4\cos \left( {\pi + \dfrac{\pi }{3}} \right) \;
$
Using Allied angle in trigonometry $ \cos \left( {\pi + \theta } \right) = - \cos \theta $
$
= - 4\cos \left( {\dfrac{\pi }{3}} \right) \\
= - 4\left( {\dfrac{1}{2}} \right) \\
= - 2 \;
$ using trigonometric value of $ \cos \left( {\dfrac{\pi }{3}} \right) = \dfrac{1}{2} $
$
y = 4\sin \left( {\dfrac{{4\pi }}{3}} \right) \\
= 4\sin \left( {\pi + \dfrac{\pi }{3}} \right) \;
$
Using Allied angle in trigonometry $ \sin \left( {\pi + \theta } \right) = - \sin \theta $
$
= - 4\sin \left( {\dfrac{\pi }{3}} \right) \\
= - 4\left( {\dfrac{{\sqrt 3 }}{2}} \right) \\
= - 2\sqrt 3 \;
$ using trigonometric value of $ \sin \left( {\dfrac{\pi }{3}} \right) = \dfrac{{\sqrt 3 }}{2} $
Therefore, polar coordinates $ \left( {4,\dfrac{{4\pi }}{3}} \right) $ in rectangular coordinates are $ \left( { - 2, - 2\sqrt 3 } \right) $ .
So, the correct answer is “ $ \left( { - 2, - 2\sqrt 3 } \right) $”.
Note: A Cartesian coordinate system is a coordinate system that specifies each point uniquely in a plane by a set of numerical coordinates, which are the signed distances to the point from two fixed perpendicular oriented lines, measured in the same unit of length.
$
x = r\cos \theta \\
y = r\sin \theta \;
$
where r is equal to 4 and $ \theta $ is equal to $ \dfrac{{4\pi }}{3} $ to get the rectangular coordinates $ \left( {x,y} \right) $
Complete step-by-step answer:
There are two ways to determine a point on a plane, one is by the rectangular coordinates and another is by the Polar Coordinates.
Polar Coordinates $ (p,\theta ) $ is actually a 2D coordinate system in which every point on the plane is found by a distance $ p $ from a reference point and an angle i.e. $ \theta $ from a reference direction.
where $ p $ is the radial coordinate and $ \theta $ is known as the angular coordinate.
We are given a polar coordinate $ \left( {4,\dfrac{{4\pi }}{3}} \right) $
Radial coordinate = $ p\,/\,r = 4 $
Angular coordinate $ = \theta = \dfrac{{4\pi }}{3} $
Now to transformation by which we can find our rectangular coordinates $ \left( {x,y} \right) $ is
$
x = r\cos \theta \\
y = r\sin \theta \;
$
In our case $ r = 4\,and\,\theta = \dfrac{{4\pi }}{3} $
$
x = 4\cos \left( {\dfrac{{4\pi }}{3}} \right) \\
= 4\cos \left( {\pi + \dfrac{\pi }{3}} \right) \;
$
Using Allied angle in trigonometry $ \cos \left( {\pi + \theta } \right) = - \cos \theta $
$
= - 4\cos \left( {\dfrac{\pi }{3}} \right) \\
= - 4\left( {\dfrac{1}{2}} \right) \\
= - 2 \;
$ using trigonometric value of $ \cos \left( {\dfrac{\pi }{3}} \right) = \dfrac{1}{2} $
$
y = 4\sin \left( {\dfrac{{4\pi }}{3}} \right) \\
= 4\sin \left( {\pi + \dfrac{\pi }{3}} \right) \;
$
Using Allied angle in trigonometry $ \sin \left( {\pi + \theta } \right) = - \sin \theta $
$
= - 4\sin \left( {\dfrac{\pi }{3}} \right) \\
= - 4\left( {\dfrac{{\sqrt 3 }}{2}} \right) \\
= - 2\sqrt 3 \;
$ using trigonometric value of $ \sin \left( {\dfrac{\pi }{3}} \right) = \dfrac{{\sqrt 3 }}{2} $
Therefore, polar coordinates $ \left( {4,\dfrac{{4\pi }}{3}} \right) $ in rectangular coordinates are $ \left( { - 2, - 2\sqrt 3 } \right) $ .
So, the correct answer is “ $ \left( { - 2, - 2\sqrt 3 } \right) $”.
Note: A Cartesian coordinate system is a coordinate system that specifies each point uniquely in a plane by a set of numerical coordinates, which are the signed distances to the point from two fixed perpendicular oriented lines, measured in the same unit of length.
Recently Updated Pages
Master Class 12 Business Studies: Engaging Questions & Answers for Success

Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 English: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 12 Social Science: Engaging Questions & Answers for Success

Master Class 12 Chemistry: Engaging Questions & Answers for Success

Trending doubts
Which animal has three hearts class 11 biology CBSE

1 Quintal is equal to a 110 kg b 10 kg c 100kg d 1000 class 11 physics CBSE

The camels hump is made of which tissues a Skeletal class 11 biology CBSE

Discuss the various forms of bacteria class 11 biology CBSE

Bond order ofO2 O2+ O2 and O22 is in order A O2 langle class 11 chemistry CBSE

Draw a diagram of nephron and explain its structur class 11 biology CBSE

