
How do you find rectangular coordinates for the point with polar coordinates $ \left( {4,\dfrac{{4\pi }}{3}} \right) $ ?
Answer
464.4k+ views
Hint: In order to find the rectangular coordinates $ \left( {x,y} \right) $ ,use the transformation
$
x = r\cos \theta \\
y = r\sin \theta \;
$
where r is equal to 4 and $ \theta $ is equal to $ \dfrac{{4\pi }}{3} $ to get the rectangular coordinates $ \left( {x,y} \right) $
Complete step-by-step answer:
There are two ways to determine a point on a plane, one is by the rectangular coordinates and another is by the Polar Coordinates.
Polar Coordinates $ (p,\theta ) $ is actually a 2D coordinate system in which every point on the plane is found by a distance $ p $ from a reference point and an angle i.e. $ \theta $ from a reference direction.
where $ p $ is the radial coordinate and $ \theta $ is known as the angular coordinate.
We are given a polar coordinate $ \left( {4,\dfrac{{4\pi }}{3}} \right) $
Radial coordinate = $ p\,/\,r = 4 $
Angular coordinate $ = \theta = \dfrac{{4\pi }}{3} $
Now to transformation by which we can find our rectangular coordinates $ \left( {x,y} \right) $ is
$
x = r\cos \theta \\
y = r\sin \theta \;
$
In our case $ r = 4\,and\,\theta = \dfrac{{4\pi }}{3} $
$
x = 4\cos \left( {\dfrac{{4\pi }}{3}} \right) \\
= 4\cos \left( {\pi + \dfrac{\pi }{3}} \right) \;
$
Using Allied angle in trigonometry $ \cos \left( {\pi + \theta } \right) = - \cos \theta $
$
= - 4\cos \left( {\dfrac{\pi }{3}} \right) \\
= - 4\left( {\dfrac{1}{2}} \right) \\
= - 2 \;
$ using trigonometric value of $ \cos \left( {\dfrac{\pi }{3}} \right) = \dfrac{1}{2} $
$
y = 4\sin \left( {\dfrac{{4\pi }}{3}} \right) \\
= 4\sin \left( {\pi + \dfrac{\pi }{3}} \right) \;
$
Using Allied angle in trigonometry $ \sin \left( {\pi + \theta } \right) = - \sin \theta $
$
= - 4\sin \left( {\dfrac{\pi }{3}} \right) \\
= - 4\left( {\dfrac{{\sqrt 3 }}{2}} \right) \\
= - 2\sqrt 3 \;
$ using trigonometric value of $ \sin \left( {\dfrac{\pi }{3}} \right) = \dfrac{{\sqrt 3 }}{2} $
Therefore, polar coordinates $ \left( {4,\dfrac{{4\pi }}{3}} \right) $ in rectangular coordinates are $ \left( { - 2, - 2\sqrt 3 } \right) $ .
So, the correct answer is “ $ \left( { - 2, - 2\sqrt 3 } \right) $”.
Note: A Cartesian coordinate system is a coordinate system that specifies each point uniquely in a plane by a set of numerical coordinates, which are the signed distances to the point from two fixed perpendicular oriented lines, measured in the same unit of length.
$
x = r\cos \theta \\
y = r\sin \theta \;
$
where r is equal to 4 and $ \theta $ is equal to $ \dfrac{{4\pi }}{3} $ to get the rectangular coordinates $ \left( {x,y} \right) $
Complete step-by-step answer:
There are two ways to determine a point on a plane, one is by the rectangular coordinates and another is by the Polar Coordinates.
Polar Coordinates $ (p,\theta ) $ is actually a 2D coordinate system in which every point on the plane is found by a distance $ p $ from a reference point and an angle i.e. $ \theta $ from a reference direction.
where $ p $ is the radial coordinate and $ \theta $ is known as the angular coordinate.
We are given a polar coordinate $ \left( {4,\dfrac{{4\pi }}{3}} \right) $
Radial coordinate = $ p\,/\,r = 4 $
Angular coordinate $ = \theta = \dfrac{{4\pi }}{3} $
Now to transformation by which we can find our rectangular coordinates $ \left( {x,y} \right) $ is
$
x = r\cos \theta \\
y = r\sin \theta \;
$
In our case $ r = 4\,and\,\theta = \dfrac{{4\pi }}{3} $
$
x = 4\cos \left( {\dfrac{{4\pi }}{3}} \right) \\
= 4\cos \left( {\pi + \dfrac{\pi }{3}} \right) \;
$
Using Allied angle in trigonometry $ \cos \left( {\pi + \theta } \right) = - \cos \theta $
$
= - 4\cos \left( {\dfrac{\pi }{3}} \right) \\
= - 4\left( {\dfrac{1}{2}} \right) \\
= - 2 \;
$ using trigonometric value of $ \cos \left( {\dfrac{\pi }{3}} \right) = \dfrac{1}{2} $
$
y = 4\sin \left( {\dfrac{{4\pi }}{3}} \right) \\
= 4\sin \left( {\pi + \dfrac{\pi }{3}} \right) \;
$
Using Allied angle in trigonometry $ \sin \left( {\pi + \theta } \right) = - \sin \theta $
$
= - 4\sin \left( {\dfrac{\pi }{3}} \right) \\
= - 4\left( {\dfrac{{\sqrt 3 }}{2}} \right) \\
= - 2\sqrt 3 \;
$ using trigonometric value of $ \sin \left( {\dfrac{\pi }{3}} \right) = \dfrac{{\sqrt 3 }}{2} $
Therefore, polar coordinates $ \left( {4,\dfrac{{4\pi }}{3}} \right) $ in rectangular coordinates are $ \left( { - 2, - 2\sqrt 3 } \right) $ .
So, the correct answer is “ $ \left( { - 2, - 2\sqrt 3 } \right) $”.
Note: A Cartesian coordinate system is a coordinate system that specifies each point uniquely in a plane by a set of numerical coordinates, which are the signed distances to the point from two fixed perpendicular oriented lines, measured in the same unit of length.
Recently Updated Pages
The correct geometry and hybridization for XeF4 are class 11 chemistry CBSE

Water softening by Clarks process uses ACalcium bicarbonate class 11 chemistry CBSE

With reference to graphite and diamond which of the class 11 chemistry CBSE

A certain household has consumed 250 units of energy class 11 physics CBSE

The lightest metal known is A beryllium B lithium C class 11 chemistry CBSE

What is the formula mass of the iodine molecule class 11 chemistry CBSE

Trending doubts
Is Cellular respiration an Oxidation or Reduction class 11 chemistry CBSE

In electron dot structure the valence shell electrons class 11 chemistry CBSE

What is the Pitti Island famous for ABird Sanctuary class 11 social science CBSE

State the laws of reflection of light

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells
