
How do you find rectangular coordinates for the point with polar coordinates $ \left( {4,\dfrac{{4\pi }}{3}} \right) $ ?
Answer
561.9k+ views
Hint: In order to find the rectangular coordinates $ \left( {x,y} \right) $ ,use the transformation
$
x = r\cos \theta \\
y = r\sin \theta \;
$
where r is equal to 4 and $ \theta $ is equal to $ \dfrac{{4\pi }}{3} $ to get the rectangular coordinates $ \left( {x,y} \right) $
Complete step-by-step answer:
There are two ways to determine a point on a plane, one is by the rectangular coordinates and another is by the Polar Coordinates.
Polar Coordinates $ (p,\theta ) $ is actually a 2D coordinate system in which every point on the plane is found by a distance $ p $ from a reference point and an angle i.e. $ \theta $ from a reference direction.
where $ p $ is the radial coordinate and $ \theta $ is known as the angular coordinate.
We are given a polar coordinate $ \left( {4,\dfrac{{4\pi }}{3}} \right) $
Radial coordinate = $ p\,/\,r = 4 $
Angular coordinate $ = \theta = \dfrac{{4\pi }}{3} $
Now to transformation by which we can find our rectangular coordinates $ \left( {x,y} \right) $ is
$
x = r\cos \theta \\
y = r\sin \theta \;
$
In our case $ r = 4\,and\,\theta = \dfrac{{4\pi }}{3} $
$
x = 4\cos \left( {\dfrac{{4\pi }}{3}} \right) \\
= 4\cos \left( {\pi + \dfrac{\pi }{3}} \right) \;
$
Using Allied angle in trigonometry $ \cos \left( {\pi + \theta } \right) = - \cos \theta $
$
= - 4\cos \left( {\dfrac{\pi }{3}} \right) \\
= - 4\left( {\dfrac{1}{2}} \right) \\
= - 2 \;
$ using trigonometric value of $ \cos \left( {\dfrac{\pi }{3}} \right) = \dfrac{1}{2} $
$
y = 4\sin \left( {\dfrac{{4\pi }}{3}} \right) \\
= 4\sin \left( {\pi + \dfrac{\pi }{3}} \right) \;
$
Using Allied angle in trigonometry $ \sin \left( {\pi + \theta } \right) = - \sin \theta $
$
= - 4\sin \left( {\dfrac{\pi }{3}} \right) \\
= - 4\left( {\dfrac{{\sqrt 3 }}{2}} \right) \\
= - 2\sqrt 3 \;
$ using trigonometric value of $ \sin \left( {\dfrac{\pi }{3}} \right) = \dfrac{{\sqrt 3 }}{2} $
Therefore, polar coordinates $ \left( {4,\dfrac{{4\pi }}{3}} \right) $ in rectangular coordinates are $ \left( { - 2, - 2\sqrt 3 } \right) $ .
So, the correct answer is “ $ \left( { - 2, - 2\sqrt 3 } \right) $”.
Note: A Cartesian coordinate system is a coordinate system that specifies each point uniquely in a plane by a set of numerical coordinates, which are the signed distances to the point from two fixed perpendicular oriented lines, measured in the same unit of length.
$
x = r\cos \theta \\
y = r\sin \theta \;
$
where r is equal to 4 and $ \theta $ is equal to $ \dfrac{{4\pi }}{3} $ to get the rectangular coordinates $ \left( {x,y} \right) $
Complete step-by-step answer:
There are two ways to determine a point on a plane, one is by the rectangular coordinates and another is by the Polar Coordinates.
Polar Coordinates $ (p,\theta ) $ is actually a 2D coordinate system in which every point on the plane is found by a distance $ p $ from a reference point and an angle i.e. $ \theta $ from a reference direction.
where $ p $ is the radial coordinate and $ \theta $ is known as the angular coordinate.
We are given a polar coordinate $ \left( {4,\dfrac{{4\pi }}{3}} \right) $
Radial coordinate = $ p\,/\,r = 4 $
Angular coordinate $ = \theta = \dfrac{{4\pi }}{3} $
Now to transformation by which we can find our rectangular coordinates $ \left( {x,y} \right) $ is
$
x = r\cos \theta \\
y = r\sin \theta \;
$
In our case $ r = 4\,and\,\theta = \dfrac{{4\pi }}{3} $
$
x = 4\cos \left( {\dfrac{{4\pi }}{3}} \right) \\
= 4\cos \left( {\pi + \dfrac{\pi }{3}} \right) \;
$
Using Allied angle in trigonometry $ \cos \left( {\pi + \theta } \right) = - \cos \theta $
$
= - 4\cos \left( {\dfrac{\pi }{3}} \right) \\
= - 4\left( {\dfrac{1}{2}} \right) \\
= - 2 \;
$ using trigonometric value of $ \cos \left( {\dfrac{\pi }{3}} \right) = \dfrac{1}{2} $
$
y = 4\sin \left( {\dfrac{{4\pi }}{3}} \right) \\
= 4\sin \left( {\pi + \dfrac{\pi }{3}} \right) \;
$
Using Allied angle in trigonometry $ \sin \left( {\pi + \theta } \right) = - \sin \theta $
$
= - 4\sin \left( {\dfrac{\pi }{3}} \right) \\
= - 4\left( {\dfrac{{\sqrt 3 }}{2}} \right) \\
= - 2\sqrt 3 \;
$ using trigonometric value of $ \sin \left( {\dfrac{\pi }{3}} \right) = \dfrac{{\sqrt 3 }}{2} $
Therefore, polar coordinates $ \left( {4,\dfrac{{4\pi }}{3}} \right) $ in rectangular coordinates are $ \left( { - 2, - 2\sqrt 3 } \right) $ .
So, the correct answer is “ $ \left( { - 2, - 2\sqrt 3 } \right) $”.
Note: A Cartesian coordinate system is a coordinate system that specifies each point uniquely in a plane by a set of numerical coordinates, which are the signed distances to the point from two fixed perpendicular oriented lines, measured in the same unit of length.
Recently Updated Pages
Master Class 11 English: Engaging Questions & Answers for Success

Master Class 11 Maths: Engaging Questions & Answers for Success

Master Class 11 Biology: Engaging Questions & Answers for Success

Master Class 11 Physics: Engaging Questions & Answers for Success

Master Class 11 Accountancy: Engaging Questions & Answers for Success

Class 11 Question and Answer - Your Ultimate Solutions Guide

Trending doubts
One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

Discuss the various forms of bacteria class 11 biology CBSE

Draw a diagram of a plant cell and label at least eight class 11 biology CBSE

State the laws of reflection of light

Explain zero factorial class 11 maths CBSE

10 examples of friction in our daily life

