
Find real numbers x and y if \[\left( {x - iy} \right)\left( {3 + 5i} \right)\] is a conjugate of \[ - 6 - 24i.1 + i.1 - i\]
Answer
588k+ views
Hint: First Find the product of the terms given and then its conjugate. Then equating the real part and complex part coefficient and then solving them will give us the required solution.
Complete step by step answer:
Given that,
\[ - 6 - 24i.1 + i.1 - i\]
\[ \Rightarrow \left( { - 6 - 24i} \right)\left( {1 + i} \right)\left( {1 - i} \right) \\
\Rightarrow \left( { - 6 - 24i} \right)\left( {1 - {i^2}} \right) \\
\Rightarrow \left( { - 6 - 24i} \right)\left( {1 - \left( { - 1} \right)} \right) \\
\Rightarrow \left( { - 6 - 24i} \right) \times 2 \\
\Rightarrow - 12 + 48i \\
\]
Conjugate of \[ - 12 - 48i\] is \[ - 12 + 48i\].
Now,
\[\left( {x - iy} \right)\left( {3 + 5i} \right)\]
\[ \Rightarrow 3x + 5xi - 3yi - 5y{i^2} \\
\Rightarrow 3x + 5xi - 3yi + 5y \\
\Rightarrow \left( {3x + 5y} \right) + i\left( {5x - 3y} \right) \\
\]
We have both in \[a + bi\] form.
So we get,
\[3x + 5y = - 12\].......equation1
\[5x - 3y = 48\]......equation2
Solving these equations we will get values of x and y.
Multiply equation1 by 3 and equation2 by 5
\[ \Rightarrow (3x + 5y = - 12) \times 3\]
\[ \Rightarrow 9x + 15y = - 36\]….equa1.1
Now for equation2
\[ \Rightarrow (5x - 3y = 48) \times 5\]
\[ \Rightarrow 25x - 15y = 240\]…..equa2.1
Adding equa1.1 and equa2.1
\[
\Rightarrow 34x = 204 \\
\Rightarrow x = \dfrac{{204}}{{34}} \\
\Rightarrow x = 6 \\
\]
Hence to find value of y put this value of x in any on eof the equations above
Putting it in equa2.1
\[
\Rightarrow 25 \times 6 - 15y = 240 \\
\Rightarrow 150 - 15y = 240 \\
\Rightarrow 15y = 150 - 240 \\
\Rightarrow y = \dfrac{{ - 90}}{{15}} \\
\Rightarrow y = - 6 \\
\]
Thus real numbers x=6 and y=-6.
Note: Complex conjugate of a+bi is a-bi. Don’t forget to take the complex conjugate of that number. Value of ${i^2}$=-1.
Additional information: Complex numbers are of the form a+bi, where a and b are real numbers and i is the imaginary unit.
A real number if to be treated as an imaginary number it is written as a+0i.
If a number is to be treated as purely imaginary then it is written as 0+bi.
Complete step by step answer:
Given that,
\[ - 6 - 24i.1 + i.1 - i\]
\[ \Rightarrow \left( { - 6 - 24i} \right)\left( {1 + i} \right)\left( {1 - i} \right) \\
\Rightarrow \left( { - 6 - 24i} \right)\left( {1 - {i^2}} \right) \\
\Rightarrow \left( { - 6 - 24i} \right)\left( {1 - \left( { - 1} \right)} \right) \\
\Rightarrow \left( { - 6 - 24i} \right) \times 2 \\
\Rightarrow - 12 + 48i \\
\]
Conjugate of \[ - 12 - 48i\] is \[ - 12 + 48i\].
Now,
\[\left( {x - iy} \right)\left( {3 + 5i} \right)\]
\[ \Rightarrow 3x + 5xi - 3yi - 5y{i^2} \\
\Rightarrow 3x + 5xi - 3yi + 5y \\
\Rightarrow \left( {3x + 5y} \right) + i\left( {5x - 3y} \right) \\
\]
We have both in \[a + bi\] form.
So we get,
\[3x + 5y = - 12\].......equation1
\[5x - 3y = 48\]......equation2
Solving these equations we will get values of x and y.
Multiply equation1 by 3 and equation2 by 5
\[ \Rightarrow (3x + 5y = - 12) \times 3\]
\[ \Rightarrow 9x + 15y = - 36\]….equa1.1
Now for equation2
\[ \Rightarrow (5x - 3y = 48) \times 5\]
\[ \Rightarrow 25x - 15y = 240\]…..equa2.1
Adding equa1.1 and equa2.1
\[
\Rightarrow 34x = 204 \\
\Rightarrow x = \dfrac{{204}}{{34}} \\
\Rightarrow x = 6 \\
\]
Hence to find value of y put this value of x in any on eof the equations above
Putting it in equa2.1
\[
\Rightarrow 25 \times 6 - 15y = 240 \\
\Rightarrow 150 - 15y = 240 \\
\Rightarrow 15y = 150 - 240 \\
\Rightarrow y = \dfrac{{ - 90}}{{15}} \\
\Rightarrow y = - 6 \\
\]
Thus real numbers x=6 and y=-6.
Note: Complex conjugate of a+bi is a-bi. Don’t forget to take the complex conjugate of that number. Value of ${i^2}$=-1.
Additional information: Complex numbers are of the form a+bi, where a and b are real numbers and i is the imaginary unit.
A real number if to be treated as an imaginary number it is written as a+0i.
If a number is to be treated as purely imaginary then it is written as 0+bi.
Recently Updated Pages
Master Class 11 Computer Science: Engaging Questions & Answers for Success

Master Class 11 Business Studies: Engaging Questions & Answers for Success

Master Class 11 Economics: Engaging Questions & Answers for Success

Master Class 11 English: Engaging Questions & Answers for Success

Master Class 11 Maths: Engaging Questions & Answers for Success

Master Class 11 Biology: Engaging Questions & Answers for Success

Trending doubts
One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

There are 720 permutations of the digits 1 2 3 4 5 class 11 maths CBSE

Discuss the various forms of bacteria class 11 biology CBSE

Draw a diagram of a plant cell and label at least eight class 11 biology CBSE

State the laws of reflection of light

Explain zero factorial class 11 maths CBSE

