
Find product using suitable identity $\left( x-\dfrac{1}{x} \right)\left( x+\dfrac{1}{x} \right)\left( {{x}^{2}}+\dfrac{1}{{{x}^{2}}} \right)\left( {{x}^{4}}+\dfrac{1}{{{x}^{4}}} \right)$ ?
Answer
522.9k+ views
Hint: We need to find the product of the expression $\left( x-\dfrac{1}{x} \right)\left( x+\dfrac{1}{x} \right)\left( {{x}^{2}}+\dfrac{1}{{{x}^{2}}} \right)\left( {{x}^{4}}+\dfrac{1}{{{x}^{4}}} \right)$ using a suitable identity. We solve the given question using the identity $\left( a+b \right)\left( a-b \right)={{a}^{2}}-{{b}^{2}}$ to get the desired result.
Complete step by step answer:
We are given an expression and are asked to find the product of the same using a suitable identity. We will be solving the given question using the identity $\left( a+b \right)\left( a-b \right)={{a}^{2}}-{{b}^{2}}$ .
Let us understand the implementation of the above identity through an example.
Example:
Find the value of $\left( x+2 \right)\left( x-2 \right)?$
The given question is of the form $\left( a+b \right)\left( a-b \right)$
The result of the given question is obtained using an identity $\left( a+b \right)\left( a-b \right)={{a}^{2}}-{{b}^{2}}$
In our case,
a = x
b = 2
From the above identity,
$\Rightarrow \left( x+2 \right)\left( x-2 \right)={{x}^{2}}-{{2}^{2}}$
We know that the value of ${{2}^{2}}$ is equal to 4.
Substituting the same, we get,
$\therefore \left( x+2 \right)\left( x-2 \right)={{x}^{2}}-4$
According to our question,
The given expression is $\left( x-\dfrac{1}{x} \right)\left( x+\dfrac{1}{x} \right)\left( {{x}^{2}}+\dfrac{1}{{{x}^{2}}} \right)\left( {{x}^{4}}+\dfrac{1}{{{x}^{4}}} \right)$
In the above expression, the terms $\left( x-\dfrac{1}{x} \right)\left( x+\dfrac{1}{x} \right)$ are in the form of $\left( a+b \right)\left( a-b \right)$
The result can be obtained using an identity $\left( a+b \right)\left( a-b \right)={{a}^{2}}-{{b}^{2}}$
Here,
a = x
b = $\dfrac{1}{x}$
Applying the identity, we get,
$\Rightarrow \left( x-\dfrac{1}{x} \right)\left( x+\dfrac{1}{x} \right)\left( {{x}^{2}}+\dfrac{1}{{{x}^{2}}} \right)\left( {{x}^{4}}+\dfrac{1}{{{x}^{4}}} \right)=\left( {{x}^{2}}-{{\left( \dfrac{1}{x} \right)}^{2}} \right)\left( {{x}^{2}}+\dfrac{1}{{{x}^{2}}} \right)\left( {{x}^{4}}+\dfrac{1}{{{x}^{4}}} \right)$
Simplifying the above equation, we get,
$\Rightarrow \left( x-\dfrac{1}{x} \right)\left( x+\dfrac{1}{x} \right)\left( {{x}^{2}}+\dfrac{1}{{{x}^{2}}} \right)\left( {{x}^{4}}+\dfrac{1}{{{x}^{4}}} \right)=\left( {{x}^{2}}-\dfrac{1}{{{x}^{2}}} \right)\left( {{x}^{2}}+\dfrac{1}{{{x}^{2}}} \right)\left( {{x}^{4}}+\dfrac{1}{{{x}^{4}}} \right)$
In the above expression, the terms $\left( {{x}^{2}}-\dfrac{1}{{{x}^{2}}} \right)\left( {{x}^{2}}+\dfrac{1}{{{x}^{2}}} \right)$ are in the form of $\left( a+b \right)\left( a-b \right)$
The result can be obtained using an identity $\left( a+b \right)\left( a-b \right)={{a}^{2}}-{{b}^{2}}$
Here,
a = ${{x}^{2}}$
b = $\dfrac{1}{{{x}^{2}}}$
Applying the identity, we get,
$\Rightarrow \left( x-\dfrac{1}{x} \right)\left( x+\dfrac{1}{x} \right)\left( {{x}^{2}}+\dfrac{1}{{{x}^{2}}} \right)\left( {{x}^{4}}+\dfrac{1}{{{x}^{4}}} \right)=\left( {{\left( {{x}^{2}} \right)}^{2}}-{{\left( \dfrac{1}{{{x}^{2}}} \right)}^{2}} \right)\left( {{x}^{4}}+\dfrac{1}{{{x}^{4}}} \right)$
Simplifying the above equation, we get,
$\Rightarrow \left( x-\dfrac{1}{x} \right)\left( x+\dfrac{1}{x} \right)\left( {{x}^{2}}+\dfrac{1}{{{x}^{2}}} \right)\left( {{x}^{4}}+\dfrac{1}{{{x}^{4}}} \right)=\left( {{x}^{4}}-\dfrac{1}{{{x}^{4}}} \right)\left( {{x}^{4}}+\dfrac{1}{{{x}^{4}}} \right)$
In the above expression, the terms $\left( {{x}^{4}}-\dfrac{1}{{{x}^{4}}} \right)\left( {{x}^{4}}+\dfrac{1}{{{x}^{4}}} \right)$ are in the form of $\left( a+b \right)\left( a-b \right)$
The result can be obtained using an identity $\left( a+b \right)\left( a-b \right)={{a}^{2}}-{{b}^{2}}$
Here,
a = ${{x}^{4}}$
b = $\dfrac{1}{{{x}^{4}}}$
Applying the identity, we get,
$\Rightarrow \left( x-\dfrac{1}{x} \right)\left( x+\dfrac{1}{x} \right)\left( {{x}^{2}}+\dfrac{1}{{{x}^{2}}} \right)\left( {{x}^{4}}+\dfrac{1}{{{x}^{4}}} \right)=\left( {{\left( {{x}^{4}} \right)}^{2}}-{{\left( \dfrac{1}{{{x}^{4}}} \right)}^{2}} \right)$
Simplifying the above equation, we get,
$\Rightarrow \left( x-\dfrac{1}{x} \right)\left( x+\dfrac{1}{x} \right)\left( {{x}^{2}}+\dfrac{1}{{{x}^{2}}} \right)\left( {{x}^{4}}+\dfrac{1}{{{x}^{4}}} \right)=\left( {{x}^{8}}-\dfrac{1}{{{x}^{8}}} \right)$
$\therefore$ The product of $\left( x-\dfrac{1}{x} \right)\left( x+\dfrac{1}{x} \right)\left( {{x}^{2}}+\dfrac{1}{{{x}^{2}}} \right)\left( {{x}^{4}}+\dfrac{1}{{{x}^{4}}} \right)$ is ${{x}^{8}}-\dfrac{1}{{{x}^{8}}}$
Note: The given question is directly formula based and any mistake in writing an identity will result in an incorrect solution. We must remember that the value of the expression ${{\left( \dfrac{1}{a} \right)}^{n}}$ is the same as the expression $\dfrac{1}{{{a}^{n}}}$ .
Complete step by step answer:
We are given an expression and are asked to find the product of the same using a suitable identity. We will be solving the given question using the identity $\left( a+b \right)\left( a-b \right)={{a}^{2}}-{{b}^{2}}$ .
Let us understand the implementation of the above identity through an example.
Example:
Find the value of $\left( x+2 \right)\left( x-2 \right)?$
The given question is of the form $\left( a+b \right)\left( a-b \right)$
The result of the given question is obtained using an identity $\left( a+b \right)\left( a-b \right)={{a}^{2}}-{{b}^{2}}$
In our case,
a = x
b = 2
From the above identity,
$\Rightarrow \left( x+2 \right)\left( x-2 \right)={{x}^{2}}-{{2}^{2}}$
We know that the value of ${{2}^{2}}$ is equal to 4.
Substituting the same, we get,
$\therefore \left( x+2 \right)\left( x-2 \right)={{x}^{2}}-4$
According to our question,
The given expression is $\left( x-\dfrac{1}{x} \right)\left( x+\dfrac{1}{x} \right)\left( {{x}^{2}}+\dfrac{1}{{{x}^{2}}} \right)\left( {{x}^{4}}+\dfrac{1}{{{x}^{4}}} \right)$
In the above expression, the terms $\left( x-\dfrac{1}{x} \right)\left( x+\dfrac{1}{x} \right)$ are in the form of $\left( a+b \right)\left( a-b \right)$
The result can be obtained using an identity $\left( a+b \right)\left( a-b \right)={{a}^{2}}-{{b}^{2}}$
Here,
a = x
b = $\dfrac{1}{x}$
Applying the identity, we get,
$\Rightarrow \left( x-\dfrac{1}{x} \right)\left( x+\dfrac{1}{x} \right)\left( {{x}^{2}}+\dfrac{1}{{{x}^{2}}} \right)\left( {{x}^{4}}+\dfrac{1}{{{x}^{4}}} \right)=\left( {{x}^{2}}-{{\left( \dfrac{1}{x} \right)}^{2}} \right)\left( {{x}^{2}}+\dfrac{1}{{{x}^{2}}} \right)\left( {{x}^{4}}+\dfrac{1}{{{x}^{4}}} \right)$
Simplifying the above equation, we get,
$\Rightarrow \left( x-\dfrac{1}{x} \right)\left( x+\dfrac{1}{x} \right)\left( {{x}^{2}}+\dfrac{1}{{{x}^{2}}} \right)\left( {{x}^{4}}+\dfrac{1}{{{x}^{4}}} \right)=\left( {{x}^{2}}-\dfrac{1}{{{x}^{2}}} \right)\left( {{x}^{2}}+\dfrac{1}{{{x}^{2}}} \right)\left( {{x}^{4}}+\dfrac{1}{{{x}^{4}}} \right)$
In the above expression, the terms $\left( {{x}^{2}}-\dfrac{1}{{{x}^{2}}} \right)\left( {{x}^{2}}+\dfrac{1}{{{x}^{2}}} \right)$ are in the form of $\left( a+b \right)\left( a-b \right)$
The result can be obtained using an identity $\left( a+b \right)\left( a-b \right)={{a}^{2}}-{{b}^{2}}$
Here,
a = ${{x}^{2}}$
b = $\dfrac{1}{{{x}^{2}}}$
Applying the identity, we get,
$\Rightarrow \left( x-\dfrac{1}{x} \right)\left( x+\dfrac{1}{x} \right)\left( {{x}^{2}}+\dfrac{1}{{{x}^{2}}} \right)\left( {{x}^{4}}+\dfrac{1}{{{x}^{4}}} \right)=\left( {{\left( {{x}^{2}} \right)}^{2}}-{{\left( \dfrac{1}{{{x}^{2}}} \right)}^{2}} \right)\left( {{x}^{4}}+\dfrac{1}{{{x}^{4}}} \right)$
Simplifying the above equation, we get,
$\Rightarrow \left( x-\dfrac{1}{x} \right)\left( x+\dfrac{1}{x} \right)\left( {{x}^{2}}+\dfrac{1}{{{x}^{2}}} \right)\left( {{x}^{4}}+\dfrac{1}{{{x}^{4}}} \right)=\left( {{x}^{4}}-\dfrac{1}{{{x}^{4}}} \right)\left( {{x}^{4}}+\dfrac{1}{{{x}^{4}}} \right)$
In the above expression, the terms $\left( {{x}^{4}}-\dfrac{1}{{{x}^{4}}} \right)\left( {{x}^{4}}+\dfrac{1}{{{x}^{4}}} \right)$ are in the form of $\left( a+b \right)\left( a-b \right)$
The result can be obtained using an identity $\left( a+b \right)\left( a-b \right)={{a}^{2}}-{{b}^{2}}$
Here,
a = ${{x}^{4}}$
b = $\dfrac{1}{{{x}^{4}}}$
Applying the identity, we get,
$\Rightarrow \left( x-\dfrac{1}{x} \right)\left( x+\dfrac{1}{x} \right)\left( {{x}^{2}}+\dfrac{1}{{{x}^{2}}} \right)\left( {{x}^{4}}+\dfrac{1}{{{x}^{4}}} \right)=\left( {{\left( {{x}^{4}} \right)}^{2}}-{{\left( \dfrac{1}{{{x}^{4}}} \right)}^{2}} \right)$
Simplifying the above equation, we get,
$\Rightarrow \left( x-\dfrac{1}{x} \right)\left( x+\dfrac{1}{x} \right)\left( {{x}^{2}}+\dfrac{1}{{{x}^{2}}} \right)\left( {{x}^{4}}+\dfrac{1}{{{x}^{4}}} \right)=\left( {{x}^{8}}-\dfrac{1}{{{x}^{8}}} \right)$
$\therefore$ The product of $\left( x-\dfrac{1}{x} \right)\left( x+\dfrac{1}{x} \right)\left( {{x}^{2}}+\dfrac{1}{{{x}^{2}}} \right)\left( {{x}^{4}}+\dfrac{1}{{{x}^{4}}} \right)$ is ${{x}^{8}}-\dfrac{1}{{{x}^{8}}}$
Note: The given question is directly formula based and any mistake in writing an identity will result in an incorrect solution. We must remember that the value of the expression ${{\left( \dfrac{1}{a} \right)}^{n}}$ is the same as the expression $\dfrac{1}{{{a}^{n}}}$ .
Recently Updated Pages
Master Class 10 Computer Science: Engaging Questions & Answers for Success

Master Class 10 General Knowledge: Engaging Questions & Answers for Success

Master Class 10 English: Engaging Questions & Answers for Success

Master Class 10 Social Science: Engaging Questions & Answers for Success

Master Class 10 Maths: Engaging Questions & Answers for Success

Master Class 10 Science: Engaging Questions & Answers for Success

Trending doubts
What is the median of the first 10 natural numbers class 10 maths CBSE

Which women's tennis player has 24 Grand Slam singles titles?

Who is the Brand Ambassador of Incredible India?

Why is there a time difference of about 5 hours between class 10 social science CBSE

Write a letter to the principal requesting him to grant class 10 english CBSE

State and prove converse of BPT Basic Proportionality class 10 maths CBSE

