
Find n so that $\dfrac{{{a^n} + {b^n}}}{{{a^{n - 1}} + {b^{n - 1}}}}$ may be the arithmetic mean between ‘a’ and ‘b’.
Answer
579.6k+ views
Hint: Arithmetic mean of the two numbers is always lie in between two numbers. It can be obtained by dividing sum of given terms by given number of terms. For given problem we use the arithmetic mean formula for two numbers and then simplifying equations using laws of exponents to get required value of n.
Formulas Used: Arithmetic Mean of two numbers ‘a’ and ‘b’ is given by$\dfrac{{a + b}}{2}$
In exponents, if ${x^a}.{x^b} = {x^{a + b}}$ and in exponents if ${x^m} = {x^n}$ then$m = n$.
Complete step-by-step solution:
Let $\dfrac{{{a^n} + {b^n}}}{{{a^{n - 1}} + {b^{n - 1}}}}$ be the arithmetic mean of two numbers ‘a’ and ‘b’.
Then, by definition we have$A.M. = \dfrac{{a + b}}{2}$ , substituting value of AM we have
$\dfrac{{{a^n} + {b^n}}}{{{a^{n - 1}} + {b^{n - 1}}}}$ = $\dfrac{{a + b}}{2}$ cross multiplying both side
$2\left( {{a^n} + {b^n}} \right) = \left( {a + b} \right)\left( {{a^{n - 1}} + {b^{n - 1}}} \right)$ Simplifying the brackets on both sides
$ \Rightarrow 2{a^n} + 2{b^n} = a\left( {{a^{n - 1}} + {b^{n - 1}}} \right) + b\left( {{a^{n - 1}} + {b^{n - 1}}} \right)$
$ \Rightarrow 2{a^n} + 2{b^n} = {a^{1 + n - 1}} + a.{b^{n - 1}} + b.{a^{n - 1}} + {b^{1 + n - 1}}$
$ \Rightarrow 2{a^n} + 2{b^n} = {a^n} + a.{b^{n - 1}} + b.{a^{n - 1}} + {b^n}$ (Shifting ${a^n}$and ${b^n}$ on left hand side)
$2{a^n} + 2{b^n} - {a^n} - {b^n} = a.{b^{n - 1}} + b.{a^{n - 1}}$
$ \Rightarrow {a^n} + {b^n} = a.{b^{n - 1}} + b.{a^{n - 1}}$, shifting terms having ${a^n}$ on one sides and terms having ${b^n}$ on other sides.
${a^n} - b.{a^{n - 1}} = a.{b^{n - 1}} - {b^n}$ , or we can write it as
${a^{n - 1}}.a - b.{a^{n - 1}} = a.{b^{n - 1}} - b.{b^{n - 1}}$, taking common ${a^{n - 1}}$ from left side and ${b^{n - 1}}$ from right side of the equation
${a^{n - 1}}\left( {a - b} \right) = {b^{n - 1}}\left( {a - b} \right)$
$ \Rightarrow {a^{n - 1}} = \dfrac{{{b^{n - 1}}\left( {a - b} \right)}}{{(a - b)}}$,
$ \Rightarrow {a^{n - 1}} = {b^{n - 1}}$, shifting ${b^{n - 1}}$ on left hand side we have
$\dfrac{{{a^{n - 1}}}}{{{b^{n - 1}}}} = 1$
Writing $1$as ${\left( {\dfrac{a}{b}} \right)^0}$ (we know that value of any exponent having power zero is always 1)
$ \Rightarrow \dfrac{{{a^{n - 1}}}}{{{b^{n - 1}}}} = {\left( {\dfrac{a}{b}} \right)^0}$
$ \Rightarrow {\left( {\dfrac{a}{b}} \right)^{n - 1}} = {\left( {\dfrac{a}{b}} \right)^0}$
Using law of exponent if ${a^m} = {a^n}$ then m = n we have
$n - 1 = 0$
$ \Rightarrow n = 1$
Hence, if $\dfrac{{{a^n} + {b^n}}}{{{a^{n - 1}} + {b^{n - 1}}}}$ be the arithmetic mean of the two numbers then the value of n will be$1$.
Note: While, using laws of exponents one should apply laws of exponents very carefully. As we know that exponents under multiplication or division powers get either added or subtracted for terms having the same base. Also, two exponents which are equal have equal power if their bases are the same.
Formulas Used: Arithmetic Mean of two numbers ‘a’ and ‘b’ is given by$\dfrac{{a + b}}{2}$
In exponents, if ${x^a}.{x^b} = {x^{a + b}}$ and in exponents if ${x^m} = {x^n}$ then$m = n$.
Complete step-by-step solution:
Let $\dfrac{{{a^n} + {b^n}}}{{{a^{n - 1}} + {b^{n - 1}}}}$ be the arithmetic mean of two numbers ‘a’ and ‘b’.
Then, by definition we have$A.M. = \dfrac{{a + b}}{2}$ , substituting value of AM we have
$\dfrac{{{a^n} + {b^n}}}{{{a^{n - 1}} + {b^{n - 1}}}}$ = $\dfrac{{a + b}}{2}$ cross multiplying both side
$2\left( {{a^n} + {b^n}} \right) = \left( {a + b} \right)\left( {{a^{n - 1}} + {b^{n - 1}}} \right)$ Simplifying the brackets on both sides
$ \Rightarrow 2{a^n} + 2{b^n} = a\left( {{a^{n - 1}} + {b^{n - 1}}} \right) + b\left( {{a^{n - 1}} + {b^{n - 1}}} \right)$
$ \Rightarrow 2{a^n} + 2{b^n} = {a^{1 + n - 1}} + a.{b^{n - 1}} + b.{a^{n - 1}} + {b^{1 + n - 1}}$
$ \Rightarrow 2{a^n} + 2{b^n} = {a^n} + a.{b^{n - 1}} + b.{a^{n - 1}} + {b^n}$ (Shifting ${a^n}$and ${b^n}$ on left hand side)
$2{a^n} + 2{b^n} - {a^n} - {b^n} = a.{b^{n - 1}} + b.{a^{n - 1}}$
$ \Rightarrow {a^n} + {b^n} = a.{b^{n - 1}} + b.{a^{n - 1}}$, shifting terms having ${a^n}$ on one sides and terms having ${b^n}$ on other sides.
${a^n} - b.{a^{n - 1}} = a.{b^{n - 1}} - {b^n}$ , or we can write it as
${a^{n - 1}}.a - b.{a^{n - 1}} = a.{b^{n - 1}} - b.{b^{n - 1}}$, taking common ${a^{n - 1}}$ from left side and ${b^{n - 1}}$ from right side of the equation
${a^{n - 1}}\left( {a - b} \right) = {b^{n - 1}}\left( {a - b} \right)$
$ \Rightarrow {a^{n - 1}} = \dfrac{{{b^{n - 1}}\left( {a - b} \right)}}{{(a - b)}}$,
$ \Rightarrow {a^{n - 1}} = {b^{n - 1}}$, shifting ${b^{n - 1}}$ on left hand side we have
$\dfrac{{{a^{n - 1}}}}{{{b^{n - 1}}}} = 1$
Writing $1$as ${\left( {\dfrac{a}{b}} \right)^0}$ (we know that value of any exponent having power zero is always 1)
$ \Rightarrow \dfrac{{{a^{n - 1}}}}{{{b^{n - 1}}}} = {\left( {\dfrac{a}{b}} \right)^0}$
$ \Rightarrow {\left( {\dfrac{a}{b}} \right)^{n - 1}} = {\left( {\dfrac{a}{b}} \right)^0}$
Using law of exponent if ${a^m} = {a^n}$ then m = n we have
$n - 1 = 0$
$ \Rightarrow n = 1$
Hence, if $\dfrac{{{a^n} + {b^n}}}{{{a^{n - 1}} + {b^{n - 1}}}}$ be the arithmetic mean of the two numbers then the value of n will be$1$.
Note: While, using laws of exponents one should apply laws of exponents very carefully. As we know that exponents under multiplication or division powers get either added or subtracted for terms having the same base. Also, two exponents which are equal have equal power if their bases are the same.
Recently Updated Pages
Master Class 11 Computer Science: Engaging Questions & Answers for Success

Master Class 11 Business Studies: Engaging Questions & Answers for Success

Master Class 11 Economics: Engaging Questions & Answers for Success

Master Class 11 English: Engaging Questions & Answers for Success

Master Class 11 Maths: Engaging Questions & Answers for Success

Master Class 11 Biology: Engaging Questions & Answers for Success

Trending doubts
One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

There are 720 permutations of the digits 1 2 3 4 5 class 11 maths CBSE

Discuss the various forms of bacteria class 11 biology CBSE

Draw a diagram of a plant cell and label at least eight class 11 biology CBSE

State the laws of reflection of light

Explain zero factorial class 11 maths CBSE

