
Find maximum and minimum value of $\sin x.\sin \left( {{60}^{\circ }}-x \right)\sin \left( {{60}^{\circ }}+x \right)$
Answer
510.6k+ views
Hint: We are having a trigonometric equation as: $\sin x.\sin \left( {{60}^{\circ }}-x \right)\sin \left( {{60}^{\circ }}+x \right)$. The expression consists of $\sin A.\sin B.\sin C$, which can be written as: $\sin A.\left( \sin B.\sin C \right)$. Now, divide and multiply the expression by 2 to form an identity of cosine subtraction, i.e. $\cos \left( A-B \right)-\cos \left( A+B \right)=2\sin A.\sin B$. Simplify the expression by substitution the value of cosine of standard angle, if any and then using double angle relation convert the whole expression in terms of sine, i.e. $\cos 2x=1-2{{\sin }^{2}}x$. In the end, try to form an identity of $\sin 3x$ and using the domain of sine function, i.e. [-1, 1], find the minimum value or the expression.
Complete step-by-step solution:
As we are given the following expression: $\sin x.\sin \left( {{60}^{\circ }}-x \right)\sin \left( {{60}^{\circ }}+x \right).................(1)$
We can write equation (1) as:
$\sin x.\left\{ \sin \left( {{60}^{\circ }}-x \right)\sin \left( {{60}^{\circ }}+x \right) \right\}.............(2)$
Now, multiply and divide equation (2) by 2, we get:
$\dfrac{1}{2}\sin x\left\{ 2\sin \left( {{60}^{\circ }}-x \right)\sin \left( {{60}^{\circ }}+x \right) \right\}..............(3)$
As we know that: $\cos \left( A-B \right)-\cos \left( A+B \right)=2\sin A.\sin B$
So, by applying cosine subtraction identity to the equation (3), we get:
$\begin{align}
& \Rightarrow \dfrac{1}{2}\sin x\left\{ \cos \left( {{60}^{\circ }}-x-{{60}^{\circ }}-x \right)-\cos \left( {{60}^{\circ }}-x+{{60}^{\circ }}+x \right) \right\} \\
& \Rightarrow \dfrac{1}{2}\sin x\left\{ \cos \left( -2x \right)-\cos \left( {{120}^{\circ }} \right) \right\}..............(4) \\
\end{align}$
Since, \[\cos \left( -\theta \right)=\cos \theta ;\cos \left( {{120}^{\circ }} \right)=-\dfrac{1}{2}\]
So, by putting the values in equation (4), we get:
$\begin{align}
& \Rightarrow \dfrac{1}{2}\sin x\left\{ \cos \left( 2x \right)-\left( -\dfrac{1}{2} \right) \right\} \\
& \Rightarrow \dfrac{1}{2}\sin x\left\{ \cos \left( 2x \right)+\dfrac{1}{2} \right\}...........(5) \\
\end{align}$
As we know that: $\cos 2x=1-2{{\sin }^{2}}x$
So, we can write equation (5) as:
$\begin{align}
& \Rightarrow \dfrac{1}{2}\sin x\left\{ 1-2{{\sin }^{2}}x+\dfrac{1}{2} \right\} \\
& \Rightarrow \dfrac{1}{2}\sin x\left\{ \dfrac{3}{2}-2{{\sin }^{2}}x \right\} \\
& \Rightarrow \left\{ \dfrac{3}{4}\sin x-{{\sin }^{3}}x \right\} \\
& \Rightarrow \dfrac{3\sin x-{4{\sin }^{3}}x}{4}...............(6) \\
\end{align}$
As we know that: $\sin 3\theta =3\sin \theta -4{{\sin }^{3}}\theta $
So, by applying the identity to equation (6), we get:
$\sin x.\sin \left( {{60}^{\circ }}-x \right)\sin \left( {{60}^{\circ }}+x \right)=\dfrac{1}{4}\sin 3x$
Now, we need to find the minimum value of $\dfrac{1}{4}\sin 3x$
As we know that domain of sine of an angle is [-1, 1], so we can write that:
$-1 \le \sin \theta \le 1$
Using this result for $\sin 3x$, we can write:
$-1\le \sin 3x \le 1$
Now, divide the whole equation by 4 to get a relation for $\dfrac{1}{4}\sin 3x$, we get:
$-\dfrac{1}{4} \le \dfrac{1}{4}\sin 3x \le \dfrac{1}{4}$
So, the minimum value of $\dfrac{1}{4}\sin 3x$ is $-\dfrac{1}{4}$
Therefore, minimum value of $\sin x.\sin \left( {{60}^{\circ }}-x \right)\sin \left( {{60}^{\circ }}+x \right)$ is $-\dfrac{1}{4}$.
Note: There is another way to solve an expression in the form of$\sin \theta .\sin \left( {{60}^{\circ }}-\theta \right)\sin \left( {{60}^{\circ }}+\theta \right)$. It is an important result or identity of trigonometry, i.e.
$\sin \theta .\sin \left( {{60}^{\circ }}-\theta \right)\sin \left( {{60}^{\circ }}+\theta \right)=\dfrac{1}{4}\sin 3\theta $
By using the above result for the expression: $\sin x.\sin \left( {{60}^{\circ }}-x \right)\sin \left( {{60}^{\circ }}+x \right)$, we can write:
$\sin x.\sin \left( {{60}^{\circ }}-x \right)\sin \left( {{60}^{\circ }}+x \right)=\dfrac{1}{4}\sin 3x$
Now, we need to find the minimum value of $\dfrac{1}{4}\sin 3x$
As we know that domain of sine of an angle is [-1, 1], so we can write that:
$-1 \le \sin \theta \le 1$
Using this result for $\sin 3x$, we can write:
$-1 \le\sin 3x \le 1$
Now, divide the whole equation by 4 to get a relation for $\dfrac{1}{4}\sin 3x$, we get:
$-\dfrac{1}{4} \le \dfrac{1}{4}\sin 3x \le \dfrac{1}{4}$
So, the minimum value of $\dfrac{1}{4}\sin 3x$ is $-\dfrac{1}{4}$
Therefore, minimum value of $\sin x.\sin \left( {{60}^{\circ }}-x \right)\sin \left( {{60}^{\circ }}+x \right)$ is $-\dfrac{1}{4}$.
Complete step-by-step solution:
As we are given the following expression: $\sin x.\sin \left( {{60}^{\circ }}-x \right)\sin \left( {{60}^{\circ }}+x \right).................(1)$
We can write equation (1) as:
$\sin x.\left\{ \sin \left( {{60}^{\circ }}-x \right)\sin \left( {{60}^{\circ }}+x \right) \right\}.............(2)$
Now, multiply and divide equation (2) by 2, we get:
$\dfrac{1}{2}\sin x\left\{ 2\sin \left( {{60}^{\circ }}-x \right)\sin \left( {{60}^{\circ }}+x \right) \right\}..............(3)$
As we know that: $\cos \left( A-B \right)-\cos \left( A+B \right)=2\sin A.\sin B$
So, by applying cosine subtraction identity to the equation (3), we get:
$\begin{align}
& \Rightarrow \dfrac{1}{2}\sin x\left\{ \cos \left( {{60}^{\circ }}-x-{{60}^{\circ }}-x \right)-\cos \left( {{60}^{\circ }}-x+{{60}^{\circ }}+x \right) \right\} \\
& \Rightarrow \dfrac{1}{2}\sin x\left\{ \cos \left( -2x \right)-\cos \left( {{120}^{\circ }} \right) \right\}..............(4) \\
\end{align}$
Since, \[\cos \left( -\theta \right)=\cos \theta ;\cos \left( {{120}^{\circ }} \right)=-\dfrac{1}{2}\]
So, by putting the values in equation (4), we get:
$\begin{align}
& \Rightarrow \dfrac{1}{2}\sin x\left\{ \cos \left( 2x \right)-\left( -\dfrac{1}{2} \right) \right\} \\
& \Rightarrow \dfrac{1}{2}\sin x\left\{ \cos \left( 2x \right)+\dfrac{1}{2} \right\}...........(5) \\
\end{align}$
As we know that: $\cos 2x=1-2{{\sin }^{2}}x$
So, we can write equation (5) as:
$\begin{align}
& \Rightarrow \dfrac{1}{2}\sin x\left\{ 1-2{{\sin }^{2}}x+\dfrac{1}{2} \right\} \\
& \Rightarrow \dfrac{1}{2}\sin x\left\{ \dfrac{3}{2}-2{{\sin }^{2}}x \right\} \\
& \Rightarrow \left\{ \dfrac{3}{4}\sin x-{{\sin }^{3}}x \right\} \\
& \Rightarrow \dfrac{3\sin x-{4{\sin }^{3}}x}{4}...............(6) \\
\end{align}$
As we know that: $\sin 3\theta =3\sin \theta -4{{\sin }^{3}}\theta $
So, by applying the identity to equation (6), we get:
$\sin x.\sin \left( {{60}^{\circ }}-x \right)\sin \left( {{60}^{\circ }}+x \right)=\dfrac{1}{4}\sin 3x$
Now, we need to find the minimum value of $\dfrac{1}{4}\sin 3x$
As we know that domain of sine of an angle is [-1, 1], so we can write that:
$-1 \le \sin \theta \le 1$
Using this result for $\sin 3x$, we can write:
$-1\le \sin 3x \le 1$
Now, divide the whole equation by 4 to get a relation for $\dfrac{1}{4}\sin 3x$, we get:
$-\dfrac{1}{4} \le \dfrac{1}{4}\sin 3x \le \dfrac{1}{4}$
So, the minimum value of $\dfrac{1}{4}\sin 3x$ is $-\dfrac{1}{4}$
Therefore, minimum value of $\sin x.\sin \left( {{60}^{\circ }}-x \right)\sin \left( {{60}^{\circ }}+x \right)$ is $-\dfrac{1}{4}$.
Note: There is another way to solve an expression in the form of$\sin \theta .\sin \left( {{60}^{\circ }}-\theta \right)\sin \left( {{60}^{\circ }}+\theta \right)$. It is an important result or identity of trigonometry, i.e.
$\sin \theta .\sin \left( {{60}^{\circ }}-\theta \right)\sin \left( {{60}^{\circ }}+\theta \right)=\dfrac{1}{4}\sin 3\theta $
By using the above result for the expression: $\sin x.\sin \left( {{60}^{\circ }}-x \right)\sin \left( {{60}^{\circ }}+x \right)$, we can write:
$\sin x.\sin \left( {{60}^{\circ }}-x \right)\sin \left( {{60}^{\circ }}+x \right)=\dfrac{1}{4}\sin 3x$
Now, we need to find the minimum value of $\dfrac{1}{4}\sin 3x$
As we know that domain of sine of an angle is [-1, 1], so we can write that:
$-1 \le \sin \theta \le 1$
Using this result for $\sin 3x$, we can write:
$-1 \le\sin 3x \le 1$
Now, divide the whole equation by 4 to get a relation for $\dfrac{1}{4}\sin 3x$, we get:
$-\dfrac{1}{4} \le \dfrac{1}{4}\sin 3x \le \dfrac{1}{4}$
So, the minimum value of $\dfrac{1}{4}\sin 3x$ is $-\dfrac{1}{4}$
Therefore, minimum value of $\sin x.\sin \left( {{60}^{\circ }}-x \right)\sin \left( {{60}^{\circ }}+x \right)$ is $-\dfrac{1}{4}$.
Recently Updated Pages
Master Class 11 Business Studies: Engaging Questions & Answers for Success

Master Class 11 Economics: Engaging Questions & Answers for Success

Master Class 11 Accountancy: Engaging Questions & Answers for Success

Master Class 11 Computer Science: Engaging Questions & Answers for Success

Master Class 11 Maths: Engaging Questions & Answers for Success

Master Class 11 English: Engaging Questions & Answers for Success

Trending doubts
1 Quintal is equal to a 110 kg b 10 kg c 100kg d 1000 class 11 physics CBSE

How much is 23 kg in pounds class 11 chemistry CBSE

How do I get the molar mass of urea class 11 chemistry CBSE

How do I convert ms to kmh Give an example class 11 physics CBSE

Where can free central placentation be seen class 11 biology CBSE

What is the molecular weight of NaOH class 11 chemistry CBSE
