
Find maximum and minimum value of $\sin x.\sin \left( {{60}^{\circ }}-x \right)\sin \left( {{60}^{\circ }}+x \right)$
Answer
572.7k+ views
Hint: We are having a trigonometric equation as: $\sin x.\sin \left( {{60}^{\circ }}-x \right)\sin \left( {{60}^{\circ }}+x \right)$. The expression consists of $\sin A.\sin B.\sin C$, which can be written as: $\sin A.\left( \sin B.\sin C \right)$. Now, divide and multiply the expression by 2 to form an identity of cosine subtraction, i.e. $\cos \left( A-B \right)-\cos \left( A+B \right)=2\sin A.\sin B$. Simplify the expression by substitution the value of cosine of standard angle, if any and then using double angle relation convert the whole expression in terms of sine, i.e. $\cos 2x=1-2{{\sin }^{2}}x$. In the end, try to form an identity of $\sin 3x$ and using the domain of sine function, i.e. [-1, 1], find the minimum value or the expression.
Complete step-by-step solution:
As we are given the following expression: $\sin x.\sin \left( {{60}^{\circ }}-x \right)\sin \left( {{60}^{\circ }}+x \right).................(1)$
We can write equation (1) as:
$\sin x.\left\{ \sin \left( {{60}^{\circ }}-x \right)\sin \left( {{60}^{\circ }}+x \right) \right\}.............(2)$
Now, multiply and divide equation (2) by 2, we get:
$\dfrac{1}{2}\sin x\left\{ 2\sin \left( {{60}^{\circ }}-x \right)\sin \left( {{60}^{\circ }}+x \right) \right\}..............(3)$
As we know that: $\cos \left( A-B \right)-\cos \left( A+B \right)=2\sin A.\sin B$
So, by applying cosine subtraction identity to the equation (3), we get:
$\begin{align}
& \Rightarrow \dfrac{1}{2}\sin x\left\{ \cos \left( {{60}^{\circ }}-x-{{60}^{\circ }}-x \right)-\cos \left( {{60}^{\circ }}-x+{{60}^{\circ }}+x \right) \right\} \\
& \Rightarrow \dfrac{1}{2}\sin x\left\{ \cos \left( -2x \right)-\cos \left( {{120}^{\circ }} \right) \right\}..............(4) \\
\end{align}$
Since, \[\cos \left( -\theta \right)=\cos \theta ;\cos \left( {{120}^{\circ }} \right)=-\dfrac{1}{2}\]
So, by putting the values in equation (4), we get:
$\begin{align}
& \Rightarrow \dfrac{1}{2}\sin x\left\{ \cos \left( 2x \right)-\left( -\dfrac{1}{2} \right) \right\} \\
& \Rightarrow \dfrac{1}{2}\sin x\left\{ \cos \left( 2x \right)+\dfrac{1}{2} \right\}...........(5) \\
\end{align}$
As we know that: $\cos 2x=1-2{{\sin }^{2}}x$
So, we can write equation (5) as:
$\begin{align}
& \Rightarrow \dfrac{1}{2}\sin x\left\{ 1-2{{\sin }^{2}}x+\dfrac{1}{2} \right\} \\
& \Rightarrow \dfrac{1}{2}\sin x\left\{ \dfrac{3}{2}-2{{\sin }^{2}}x \right\} \\
& \Rightarrow \left\{ \dfrac{3}{4}\sin x-{{\sin }^{3}}x \right\} \\
& \Rightarrow \dfrac{3\sin x-{4{\sin }^{3}}x}{4}...............(6) \\
\end{align}$
As we know that: $\sin 3\theta =3\sin \theta -4{{\sin }^{3}}\theta $
So, by applying the identity to equation (6), we get:
$\sin x.\sin \left( {{60}^{\circ }}-x \right)\sin \left( {{60}^{\circ }}+x \right)=\dfrac{1}{4}\sin 3x$
Now, we need to find the minimum value of $\dfrac{1}{4}\sin 3x$
As we know that domain of sine of an angle is [-1, 1], so we can write that:
$-1 \le \sin \theta \le 1$
Using this result for $\sin 3x$, we can write:
$-1\le \sin 3x \le 1$
Now, divide the whole equation by 4 to get a relation for $\dfrac{1}{4}\sin 3x$, we get:
$-\dfrac{1}{4} \le \dfrac{1}{4}\sin 3x \le \dfrac{1}{4}$
So, the minimum value of $\dfrac{1}{4}\sin 3x$ is $-\dfrac{1}{4}$
Therefore, minimum value of $\sin x.\sin \left( {{60}^{\circ }}-x \right)\sin \left( {{60}^{\circ }}+x \right)$ is $-\dfrac{1}{4}$.
Note: There is another way to solve an expression in the form of$\sin \theta .\sin \left( {{60}^{\circ }}-\theta \right)\sin \left( {{60}^{\circ }}+\theta \right)$. It is an important result or identity of trigonometry, i.e.
$\sin \theta .\sin \left( {{60}^{\circ }}-\theta \right)\sin \left( {{60}^{\circ }}+\theta \right)=\dfrac{1}{4}\sin 3\theta $
By using the above result for the expression: $\sin x.\sin \left( {{60}^{\circ }}-x \right)\sin \left( {{60}^{\circ }}+x \right)$, we can write:
$\sin x.\sin \left( {{60}^{\circ }}-x \right)\sin \left( {{60}^{\circ }}+x \right)=\dfrac{1}{4}\sin 3x$
Now, we need to find the minimum value of $\dfrac{1}{4}\sin 3x$
As we know that domain of sine of an angle is [-1, 1], so we can write that:
$-1 \le \sin \theta \le 1$
Using this result for $\sin 3x$, we can write:
$-1 \le\sin 3x \le 1$
Now, divide the whole equation by 4 to get a relation for $\dfrac{1}{4}\sin 3x$, we get:
$-\dfrac{1}{4} \le \dfrac{1}{4}\sin 3x \le \dfrac{1}{4}$
So, the minimum value of $\dfrac{1}{4}\sin 3x$ is $-\dfrac{1}{4}$
Therefore, minimum value of $\sin x.\sin \left( {{60}^{\circ }}-x \right)\sin \left( {{60}^{\circ }}+x \right)$ is $-\dfrac{1}{4}$.
Complete step-by-step solution:
As we are given the following expression: $\sin x.\sin \left( {{60}^{\circ }}-x \right)\sin \left( {{60}^{\circ }}+x \right).................(1)$
We can write equation (1) as:
$\sin x.\left\{ \sin \left( {{60}^{\circ }}-x \right)\sin \left( {{60}^{\circ }}+x \right) \right\}.............(2)$
Now, multiply and divide equation (2) by 2, we get:
$\dfrac{1}{2}\sin x\left\{ 2\sin \left( {{60}^{\circ }}-x \right)\sin \left( {{60}^{\circ }}+x \right) \right\}..............(3)$
As we know that: $\cos \left( A-B \right)-\cos \left( A+B \right)=2\sin A.\sin B$
So, by applying cosine subtraction identity to the equation (3), we get:
$\begin{align}
& \Rightarrow \dfrac{1}{2}\sin x\left\{ \cos \left( {{60}^{\circ }}-x-{{60}^{\circ }}-x \right)-\cos \left( {{60}^{\circ }}-x+{{60}^{\circ }}+x \right) \right\} \\
& \Rightarrow \dfrac{1}{2}\sin x\left\{ \cos \left( -2x \right)-\cos \left( {{120}^{\circ }} \right) \right\}..............(4) \\
\end{align}$
Since, \[\cos \left( -\theta \right)=\cos \theta ;\cos \left( {{120}^{\circ }} \right)=-\dfrac{1}{2}\]
So, by putting the values in equation (4), we get:
$\begin{align}
& \Rightarrow \dfrac{1}{2}\sin x\left\{ \cos \left( 2x \right)-\left( -\dfrac{1}{2} \right) \right\} \\
& \Rightarrow \dfrac{1}{2}\sin x\left\{ \cos \left( 2x \right)+\dfrac{1}{2} \right\}...........(5) \\
\end{align}$
As we know that: $\cos 2x=1-2{{\sin }^{2}}x$
So, we can write equation (5) as:
$\begin{align}
& \Rightarrow \dfrac{1}{2}\sin x\left\{ 1-2{{\sin }^{2}}x+\dfrac{1}{2} \right\} \\
& \Rightarrow \dfrac{1}{2}\sin x\left\{ \dfrac{3}{2}-2{{\sin }^{2}}x \right\} \\
& \Rightarrow \left\{ \dfrac{3}{4}\sin x-{{\sin }^{3}}x \right\} \\
& \Rightarrow \dfrac{3\sin x-{4{\sin }^{3}}x}{4}...............(6) \\
\end{align}$
As we know that: $\sin 3\theta =3\sin \theta -4{{\sin }^{3}}\theta $
So, by applying the identity to equation (6), we get:
$\sin x.\sin \left( {{60}^{\circ }}-x \right)\sin \left( {{60}^{\circ }}+x \right)=\dfrac{1}{4}\sin 3x$
Now, we need to find the minimum value of $\dfrac{1}{4}\sin 3x$
As we know that domain of sine of an angle is [-1, 1], so we can write that:
$-1 \le \sin \theta \le 1$
Using this result for $\sin 3x$, we can write:
$-1\le \sin 3x \le 1$
Now, divide the whole equation by 4 to get a relation for $\dfrac{1}{4}\sin 3x$, we get:
$-\dfrac{1}{4} \le \dfrac{1}{4}\sin 3x \le \dfrac{1}{4}$
So, the minimum value of $\dfrac{1}{4}\sin 3x$ is $-\dfrac{1}{4}$
Therefore, minimum value of $\sin x.\sin \left( {{60}^{\circ }}-x \right)\sin \left( {{60}^{\circ }}+x \right)$ is $-\dfrac{1}{4}$.
Note: There is another way to solve an expression in the form of$\sin \theta .\sin \left( {{60}^{\circ }}-\theta \right)\sin \left( {{60}^{\circ }}+\theta \right)$. It is an important result or identity of trigonometry, i.e.
$\sin \theta .\sin \left( {{60}^{\circ }}-\theta \right)\sin \left( {{60}^{\circ }}+\theta \right)=\dfrac{1}{4}\sin 3\theta $
By using the above result for the expression: $\sin x.\sin \left( {{60}^{\circ }}-x \right)\sin \left( {{60}^{\circ }}+x \right)$, we can write:
$\sin x.\sin \left( {{60}^{\circ }}-x \right)\sin \left( {{60}^{\circ }}+x \right)=\dfrac{1}{4}\sin 3x$
Now, we need to find the minimum value of $\dfrac{1}{4}\sin 3x$
As we know that domain of sine of an angle is [-1, 1], so we can write that:
$-1 \le \sin \theta \le 1$
Using this result for $\sin 3x$, we can write:
$-1 \le\sin 3x \le 1$
Now, divide the whole equation by 4 to get a relation for $\dfrac{1}{4}\sin 3x$, we get:
$-\dfrac{1}{4} \le \dfrac{1}{4}\sin 3x \le \dfrac{1}{4}$
So, the minimum value of $\dfrac{1}{4}\sin 3x$ is $-\dfrac{1}{4}$
Therefore, minimum value of $\sin x.\sin \left( {{60}^{\circ }}-x \right)\sin \left( {{60}^{\circ }}+x \right)$ is $-\dfrac{1}{4}$.
Recently Updated Pages
Master Class 12 Business Studies: Engaging Questions & Answers for Success

Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 English: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 12 Social Science: Engaging Questions & Answers for Success

Master Class 12 Chemistry: Engaging Questions & Answers for Success

Trending doubts
What is meant by exothermic and endothermic reactions class 11 chemistry CBSE

Which animal has three hearts class 11 biology CBSE

10 examples of friction in our daily life

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

1 Quintal is equal to a 110 kg b 10 kg c 100kg d 1000 class 11 physics CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells

