
How do you find $f'\left( x \right)$ and $f''\left( x \right)$ given $f\left( x \right)={{x}^{4}}{{e}^{x}}$
Answer
563.7k+ views
Hint: First of all we have to calculate $f'\left( x \right)$, which is a first order derivative. To find the value of $f'\left( x \right)$ we will use the product rule of differentiation which is given by
$\dfrac{d}{dx}\left[ f(x)g(x) \right]=f(x)\dfrac{d}{dx}g(x)+g(x)\dfrac{d}{dx}f(x)$
Then to calculate $f''\left( x \right)$ we will differentiate the obtained value of $f'\left( x \right)$ by using the same product rule.
Complete step by step answer:
We have been given that $f\left( x \right)={{x}^{4}}{{e}^{x}}$
We have to find the values of $f'\left( x \right)$ and $f''\left( x \right)$.
Now, the given function $f\left( x \right)={{x}^{4}}{{e}^{x}}$ is the product of two functions and we have to find the derivative.
So we know that product rule to find the derivative of two functions is given by $\dfrac{d}{dx}\left[ f(x)g(x) \right]=f(x)\dfrac{d}{dx}g(x)+g(x)\dfrac{d}{dx}f(x)$
Now, we have $f(x)={{x}^{4}}$ and $g(x)={{e}^{x}}$
Substituting the values in the above formula we get
$\Rightarrow \dfrac{d}{dx}\left[ {{x}^{4}}{{e}^{x}} \right]={{x}^{4}}\dfrac{d}{dx}{{e}^{x}}+{{e}^{x}}\dfrac{d}{dx}{{x}^{4}}$
Now, we know that by chain rule $\dfrac{d}{dx}{{e}^{x}}={{e}^{x}}\dfrac{d}{dx}x$
Substituting the values in the above equation we get
$\Rightarrow \dfrac{d}{dx}\left[ {{x}^{4}}{{e}^{x}} \right]={{x}^{4}}{{e}^{x}}\dfrac{d}{dx}x+{{e}^{x}}\dfrac{d}{dx}{{x}^{4}}$
Now, we know that $\dfrac{d}{dx}{{x}^{n}}=n\times {{x}^{n-1}}$
Substituting the values we get
$\Rightarrow \dfrac{d}{dx}\left[ {{x}^{4}}{{e}^{x}} \right]={{x}^{4}}{{e}^{x}}+{{e}^{x}}4{{x}^{4-1}}$
Now, solving further we get
$\Rightarrow \dfrac{d}{dx}\left[ {{x}^{4}}{{e}^{x}} \right]={{x}^{4}}{{e}^{x}}+4{{e}^{x}}{{x}^{3}}$
Hence we get the value of $f'\left( x \right)={{x}^{4}}{{e}^{x}}+4{{e}^{x}}{{x}^{3}}$
Now, to find the $f''\left( x \right)$ we need to differentiate the obtained function again.
We have $f'\left( x \right)={{x}^{4}}{{e}^{x}}+4{{e}^{x}}{{x}^{3}}$
Now, differentiating the above equation with respect to x we get
$\Rightarrow f''\left( x \right)=\dfrac{d}{dx}{{x}^{4}}{{e}^{x}}+\dfrac{d}{dx}4{{e}^{x}}{{x}^{3}}$
Now, we know that $\dfrac{d}{dx}\left[ f(x)g(x) \right]=f(x)\dfrac{d}{dx}g(x)+g(x)\dfrac{d}{dx}f(x)$
Substituting the values we get
$\Rightarrow f''\left( x \right)={{e}^{x}}\dfrac{d}{dx}{{x}^{4}}+{{x}^{4}}\dfrac{d}{dx}{{e}^{x}}+4\left[ {{x}^{3}}\dfrac{d}{dx}{{e}^{x}}+{{e}^{x}}\dfrac{d}{dx}{{x}^{3}} \right]$
Now, we know that by chain rule $\dfrac{d}{dx}{{e}^{x}}={{e}^{x}}\dfrac{d}{dx}x$
Substituting the values we get
$\Rightarrow f''\left( x \right)={{e}^{x}}\dfrac{d}{dx}{{x}^{4}}+{{x}^{4}}{{e}^{x}}+4\left[ {{x}^{3}}{{e}^{x}}+{{e}^{x}}\dfrac{d}{dx}{{x}^{3}} \right]$
Now, we know that $\dfrac{d}{dx}{{x}^{n}}=n\times {{x}^{n-1}}$
Substituting the values we get
$\Rightarrow f''\left( x \right)=4{{e}^{x}}{{x}^{4-1}}+{{x}^{4}}{{e}^{x}}+4\left[ {{x}^{3}}{{e}^{x}}+3{{e}^{x}}{{x}^{3-1}} \right]$
Now, simplifying further we get
\[\begin{align}
& \Rightarrow f''\left( x \right)=4{{e}^{x}}{{x}^{3}}+{{x}^{4}}{{e}^{x}}+4\left[ {{x}^{3}}{{e}^{x}}+3{{e}^{x}}{{x}^{2}} \right] \\
& \Rightarrow f''\left( x \right)=4{{e}^{x}}{{x}^{3}}+{{x}^{4}}{{e}^{x}}+4{{x}^{3}}{{e}^{x}}+12{{e}^{x}}{{x}^{2}} \\
& \Rightarrow f''\left( x \right)={{x}^{4}}{{e}^{x}}+8{{e}^{x}}{{x}^{3}}+12{{e}^{x}}{{x}^{2}} \\
\end{align}\]
Hence we get the values of $f'\left( x \right)$ and $f''\left( x \right)$ as
$f'\left( x \right)={{x}^{4}}{{e}^{x}}+4{{e}^{x}}{{x}^{3}}$ and
\[f''\left( x \right)={{x}^{4}}{{e}^{x}}+8{{e}^{x}}{{x}^{3}}+12{{e}^{x}}{{x}^{2}}\]
Note: Avoid basic calculation mistakes. The point to remember about this question is that product rule and chain rule are different. Chain rule is applied when we have a composite function $f\left[ g(x) \right]$. Product rule is used when we have a product of two functions.
$\dfrac{d}{dx}\left[ f(x)g(x) \right]=f(x)\dfrac{d}{dx}g(x)+g(x)\dfrac{d}{dx}f(x)$
Then to calculate $f''\left( x \right)$ we will differentiate the obtained value of $f'\left( x \right)$ by using the same product rule.
Complete step by step answer:
We have been given that $f\left( x \right)={{x}^{4}}{{e}^{x}}$
We have to find the values of $f'\left( x \right)$ and $f''\left( x \right)$.
Now, the given function $f\left( x \right)={{x}^{4}}{{e}^{x}}$ is the product of two functions and we have to find the derivative.
So we know that product rule to find the derivative of two functions is given by $\dfrac{d}{dx}\left[ f(x)g(x) \right]=f(x)\dfrac{d}{dx}g(x)+g(x)\dfrac{d}{dx}f(x)$
Now, we have $f(x)={{x}^{4}}$ and $g(x)={{e}^{x}}$
Substituting the values in the above formula we get
$\Rightarrow \dfrac{d}{dx}\left[ {{x}^{4}}{{e}^{x}} \right]={{x}^{4}}\dfrac{d}{dx}{{e}^{x}}+{{e}^{x}}\dfrac{d}{dx}{{x}^{4}}$
Now, we know that by chain rule $\dfrac{d}{dx}{{e}^{x}}={{e}^{x}}\dfrac{d}{dx}x$
Substituting the values in the above equation we get
$\Rightarrow \dfrac{d}{dx}\left[ {{x}^{4}}{{e}^{x}} \right]={{x}^{4}}{{e}^{x}}\dfrac{d}{dx}x+{{e}^{x}}\dfrac{d}{dx}{{x}^{4}}$
Now, we know that $\dfrac{d}{dx}{{x}^{n}}=n\times {{x}^{n-1}}$
Substituting the values we get
$\Rightarrow \dfrac{d}{dx}\left[ {{x}^{4}}{{e}^{x}} \right]={{x}^{4}}{{e}^{x}}+{{e}^{x}}4{{x}^{4-1}}$
Now, solving further we get
$\Rightarrow \dfrac{d}{dx}\left[ {{x}^{4}}{{e}^{x}} \right]={{x}^{4}}{{e}^{x}}+4{{e}^{x}}{{x}^{3}}$
Hence we get the value of $f'\left( x \right)={{x}^{4}}{{e}^{x}}+4{{e}^{x}}{{x}^{3}}$
Now, to find the $f''\left( x \right)$ we need to differentiate the obtained function again.
We have $f'\left( x \right)={{x}^{4}}{{e}^{x}}+4{{e}^{x}}{{x}^{3}}$
Now, differentiating the above equation with respect to x we get
$\Rightarrow f''\left( x \right)=\dfrac{d}{dx}{{x}^{4}}{{e}^{x}}+\dfrac{d}{dx}4{{e}^{x}}{{x}^{3}}$
Now, we know that $\dfrac{d}{dx}\left[ f(x)g(x) \right]=f(x)\dfrac{d}{dx}g(x)+g(x)\dfrac{d}{dx}f(x)$
Substituting the values we get
$\Rightarrow f''\left( x \right)={{e}^{x}}\dfrac{d}{dx}{{x}^{4}}+{{x}^{4}}\dfrac{d}{dx}{{e}^{x}}+4\left[ {{x}^{3}}\dfrac{d}{dx}{{e}^{x}}+{{e}^{x}}\dfrac{d}{dx}{{x}^{3}} \right]$
Now, we know that by chain rule $\dfrac{d}{dx}{{e}^{x}}={{e}^{x}}\dfrac{d}{dx}x$
Substituting the values we get
$\Rightarrow f''\left( x \right)={{e}^{x}}\dfrac{d}{dx}{{x}^{4}}+{{x}^{4}}{{e}^{x}}+4\left[ {{x}^{3}}{{e}^{x}}+{{e}^{x}}\dfrac{d}{dx}{{x}^{3}} \right]$
Now, we know that $\dfrac{d}{dx}{{x}^{n}}=n\times {{x}^{n-1}}$
Substituting the values we get
$\Rightarrow f''\left( x \right)=4{{e}^{x}}{{x}^{4-1}}+{{x}^{4}}{{e}^{x}}+4\left[ {{x}^{3}}{{e}^{x}}+3{{e}^{x}}{{x}^{3-1}} \right]$
Now, simplifying further we get
\[\begin{align}
& \Rightarrow f''\left( x \right)=4{{e}^{x}}{{x}^{3}}+{{x}^{4}}{{e}^{x}}+4\left[ {{x}^{3}}{{e}^{x}}+3{{e}^{x}}{{x}^{2}} \right] \\
& \Rightarrow f''\left( x \right)=4{{e}^{x}}{{x}^{3}}+{{x}^{4}}{{e}^{x}}+4{{x}^{3}}{{e}^{x}}+12{{e}^{x}}{{x}^{2}} \\
& \Rightarrow f''\left( x \right)={{x}^{4}}{{e}^{x}}+8{{e}^{x}}{{x}^{3}}+12{{e}^{x}}{{x}^{2}} \\
\end{align}\]
Hence we get the values of $f'\left( x \right)$ and $f''\left( x \right)$ as
$f'\left( x \right)={{x}^{4}}{{e}^{x}}+4{{e}^{x}}{{x}^{3}}$ and
\[f''\left( x \right)={{x}^{4}}{{e}^{x}}+8{{e}^{x}}{{x}^{3}}+12{{e}^{x}}{{x}^{2}}\]
Note: Avoid basic calculation mistakes. The point to remember about this question is that product rule and chain rule are different. Chain rule is applied when we have a composite function $f\left[ g(x) \right]$. Product rule is used when we have a product of two functions.
Recently Updated Pages
Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 Physics: Engaging Questions & Answers for Success

Master Class 12 English: Engaging Questions & Answers for Success

Master Class 12 Social Science: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 12 Business Studies: Engaging Questions & Answers for Success

Trending doubts
Which are the Top 10 Largest Countries of the World?

What are the major means of transport Explain each class 12 social science CBSE

Draw a labelled sketch of the human eye class 12 physics CBSE

Why cannot DNA pass through cell membranes class 12 biology CBSE

Differentiate between insitu conservation and exsitu class 12 biology CBSE

Draw a neat and well labeled diagram of TS of ovary class 12 biology CBSE

